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I. Introduction 

 

 During the past one hundred years, spectroscopy has been one of the most important 

experimental tools to obtain information about and understand atomic and molecular 

phenomena. Cooperation between theory and experiment led to the development and 

refinement of theoretical models and to an understanding of interactions and dynamics of 

molecules. Furthermore, spectroscopy proved to an excellent tool for analytic and structural 

analyses. In spite of the long history of the development of molecular spectroscopy, there are 

many open questions and challenges that remain. One of these, providing one of the principal 

motivations for the present work, is an improved understanding and modeling of an exotic 

molecular phenomenon, (ro)vibrational resonances (also known as quasi-bound states). 

Resonances have energies higher than the first dissociation limit. Understanding how 

molecules behave around the point of dissociation is fundamental to several points of 

chemistry, as chemical reactions by definition involve bond breaking and bond making. 

Measuring transitions corresponding to (ro)vibrational resonance states is a complex 

task; nonetheless, there are experimental data available. In fact the famous Carrington pre-

dissociation spectrum
1,2

 of the H3
+
 molecule is characterized by a large number of lines 

associated with resonance states. Assigning this spectrum is one of the longest-running 

unsolved problems of molecular spectroscopy. Furthermore, detailed knowledge of the 

spectroscopy of H3
+
 is important on its own right, since although under terrestrial conditions 

H3
+
 does not exist due to the low proton affinity of the H2 molecule, H3

+
 is an important 

interstellar molecule, and also a dominant ion in cool hydrogen plasmas. H3
+
 is also the 

simplest polyatomic molecule having just two electrons and three nuclei; thus, it can also 

serve as a benchmark system for methodological developments aimed at high accuracy.  

Another unquestionably important molecule with experimentally available resonance 

states is the water molecule. The resonance states of H2O have been investigated via state-

selective, triple-resonance spectroscopy by Grechko et. al.
3
 Unlike the Carrington bands for 

H3
+
, which are extremely dense and have hundreds of lines per one wavenumber, the 

resonance lines in the spectra of water obtained with state-selective spectroscopy are much 

sparser and have experimentally determined quantum numbers based on selection rules, 

which makes their theoretical interpretation much easier.  

In order to reach the goal of computing exotic (ro)vibrational resonance states and to 

understand near-dissociation spectra, one must be able to compute all the bound states below 
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dissociation. Even for triatomic molecules this task requires an immense amount of 

computational work both in electronic structure and nuclear motion theory, despite the 

developments in computational quantum chemistry.  

To construct a potential energy surface (PES) which has global spectroscopic accuracy 

all the way to the first dissociation limit is by itself a significant challenge. This has been 

achieved for only a few molecules. Without going into details, only two issues are noted. The 

first difficulty in constructing a PES having correct dissociative behavior is the computation 

of the great many accurate energy values near dissociation, where usually several electronic 

states get close to each other. Therefore, one needs to consider multireference methods along 

with adiabatic corrections. Even if one is capable of producing the large number of accurate 

PES points which cover the coordinate space sufficiently densely, a second difficulty arises, 

namely the fitting of an analytical functional form to the energy points in the asymptotic 

region with high accuracy. 

If an accurate global PES is at hand, computation of the bound rovibrational states up 

to dissociation can be attempted. Although in principle this task is straightforward, it is far 

from being trivial. In order to compute the many (hundreds or thousands of) bound states, one 

needs to use an effective algorithm which is capable of describing the diffuse, highly excited 

states. This requires a compact basis set expansion of the wavefunction, which can be 

achieved most straightforwardly using internal coordinates with corresponding prederived, 

tailor-made Hamiltonians.
4
 However, such operators always contain singular terms which 

might diverge at some coordinate values. If these so-called singular nuclear configurations, 

corresponding to singularities present in the kinetic energy operator, are energetically 

accessible by the nuclear motions investigated, special care must be exercised to avoid the 

resulting numerical problems during variational computation of (ro)vibrational energy levels.  

Theoretical techniques that do not treat these singularities may result in unconverged 

eigenenergies; therefore, these methods cannot be employed when the goal is the 

determination of the complete (ro)vibrational spectrum. 

 Due partly to the lack of accurate global PESs for molecules beyond three atoms at 

present, my work of methodology development was dedicated to triatomic systems. The goal 

was to develop an effective algorithm and a corresponding computer code which are capable 

of determining bound states of triatomic molecules up to and beyond the first dissociation 

asymptote. While on route to achieve this goal, the need to extend the algorithm with a 
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rovibrational quantum number labeling protocol and to investigate in detail the effect of the 

singularities of the Hamiltonian in the computational methods implemented arose. 

Following this train of thought, the first half of my thesis deals with the highly 

efficient D
2
FOPI protocol

5
 (mixed Discrete variable (DVR)

6
 and Finite basis (FBR)

6
 

representation of the rovibrational Hamiltonian expressed in Orthogonal internal coordinates 

using a direct Product basis set and an Iterative eigensolver) developed for bound state 

(ro)vibrational computations, along with sections on some relevant applications. This is 

followed by sections about the implementation of the rovibrational quantum number labeling 

protocol and its use in spectroscopic applications. Finally, the first half of the thesis is 

concluded with the summary of the current knowledge on the effects and the surprising lack 

of effects of the singular operator terms in certain grid-based computational methods. 

The second half of the thesis is dedicated to the computation of (ro)vibrational 

resonance states. After an introduction to resonance states, the possible algorithms for their 

determination using quantum chemical techniques are discussed along with merging of these 

algorithms with the D
2
FOPI protocol. Following are the sections on applications about one- 

and three-dimensional vibrational resonance computations.  

The thesis ends with the summary of the work done. 

 

II. Computing (ro)vibrational states up to dissociation 

 As mentioned in the Introduction, in order to compute (ro)vibrational resonance states 

in a time-independent formalism based on bound-state methodologies (see details in section 

III.2.), one needs a computational method capable of determining (ro)vibrational eigenstates 

all the way to dissociation. This section demonstrates the virtues of the current version of the 

highly efficient rovibrational D
2
FOPI protocol and code. The D

2
FOPI algorithm used to be 

able to treat only molecular vibrations. It was extended during my PhD work so it can now 

deal with rovibrational problems, as well. 
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Figure. 1. 

a) a possible R1 embedding of the body fixed coordinate frame for water molecule using b) 

Jacobi coordinates 

 

II.1. Computation of bound rovibrational states 

The particular form of the SutcliffeTennyson rovibrational Hamiltonian
4
 of triatomic 

molecules utilized in the D
2
FOPI protocol is based on orthogonal internal coordinates 

{R1,R2,}. These can be, for example, Jacobi
7
 or Radau

8
 coordinates, while the embedding of 

the body-fixed coordinate frame can either be the R1
9
 or the bisector

10
 embedding. To avoid 

the discussion being unnecessarily long, only the case of using the R1 embedding is discussed 

in detail below, as the R1
 
embedding was favored in most applications presented in this thesis. 

See Fig. 1 for an example of a possible definition of the Jacobi coordinates R1, R2, and Θ in 

the R1 embedding for the case of the water molecule. 

 

II.1.1. Hamiltonian in the R1 embedding 

For J = 0 the Hamiltonian in atomic units reads, as 

 
2 2 2

1 22 2 2 2 2

1 1 2 2 1 1 2 2

1 1 1 1ˆ ˆcot , , .
2 2 2 2

H Θ V R R Θ
R R R R Θ Θ   

     
        

       

  (1) 

In the R1 embedding, whereby the z axis of the body-fixed frame is chosen to lie parallel to 

the interatomic vector described by the R1 coordinate, the Hamiltonian in atomic units for 

J > 0 reads, as 
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   

22 2 2

2 2 2 2 2 2

1 1 2 2 1 1 2 2

2

1 22

1 1

ˆ1 1 1 1ˆ cot
2 2 2 2 sin

1 ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ2 , , .
2

z

z z

j
H Θ

R R R R Θ Θ Θ

J J j J j J j V R R Θ
R

   


   

     
        

     

    

,   (2) 

In these expressions V̂  is the potential energy operator, 1 and 2 are appropriately defined
4
 

mass-dependent constants, R1 and R2 denote the two stretching-type coordinates,  is a 

bending-type coordinate, Ĵ  and ĵ  refer to the appropiate rotational angular momenta, and 

the volume element for integration is dΘdRdRddΘd 21sinsin   with ,  and   being the 

coordinates corresponding to the overall rotation of the molecule. It is noted that the above 

forms of the Hamiltonians in Eqs. (1) and (2) are obtained by merging the stretching 

coordinate dependent parts of the volume element of integration into the Hamiltonians. This 

in turn means that the computed eigenfunctions of the Hamiltonians are the physical wave 

functions multiplied by the stretching type coordinates. 

II.1.2. Matrix representation in the R1 embedding 

The D
2
FOPI approach utilizes an orthogonal and normalized product basis

 

of the form 

        
1,,,

,,1,121

21

21
21

,,cos




LNKJNN

KlpKnn

Jp
MK

K
lnn CΘPRR  , where the  11

Rn  and  22
Rn  functions 

are DVR functions,  ΘPK
l cos  is the lth normalized associated Legendre function, 

  ,,Jp

MKC  are symmetry-adapted rotational functions of the form 

                 JJppKpDDC J

KM

pJ

MKK

Jp

MK ,1,...,1,,1,0,112,,
2/1

0  


    (3) 

where p stands for parity,
11

 M and K are the usual quantum numbers corresponding to space- 

and body-fixed projections of the rotational angular momentum on the appropriate z axis, and 

J

MKD  are the normalized Wigner rotation functions.
11

  

Due to the „almost” direct-product nature of the basis set (almost refers to the coupling 

between the  ΘPK cos  Legendre polynomials and the   ,,Jp

MKC  rotation functions via K), 

the matrix representation of the triatomic Hamiltonian of Eqs. (1) and (2) can be written as a 

sum of direct-product matrices, which takes the following form in the R1 embedding, after 

performing the integration over the rotational coordinates: 

vib21

21vib

22112211

22112211

VKRIKIR

IKIIIKH









LLLL

LLLL

NN
Θ

NNNNNN
Θ

NNNN

NNNNNNNNNNNN

 (4) 
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for J = 0, and  





rovib

,

1,

11,11,

,

2,

,

1,

21rovib

2211maxmax

2211maxmax2211maxmax

2211maxmax2211maxmax

2211maxmax2211maxmax

~
VIIRE

BIREBIRE

KRIEKIRE

IKIIIIKIH





























LL

LLLL

LLLL

NNNNNNKKK

KK

K

NNNNKK

KKK

NNNNKK

KK

NNK

Θ

NNNNKK

KK

J

pK

NNK

Θ

NNNNKK

KK

NNNNNNKKNNNNNNKK

(5) 

for J > 0, where  

     jn

jj

jnnn

NN

j R
R

R
jjjj

jj








 




2

2

, 2

1
K    j = 1 or 2,           

     
jn

jj

jnnn

NN

j R
R

R
jjjj

jj




 




2, 2

1
R      j = 1 or 2, 

     ΘP
Θ

Θ
Θ

ΘP ll

NN

Θ
LL coscotcos 0

2

2
0

, 




















K , (6) 

     ΘP
Θ

j

Θ
Θ

Θ
ΘP K

l
zK

l

NNK

Θ
LL cos

sin

ˆ
cotcos

2

2

2

2

,

,

























K

 

  1111

1

2,

1 2)1(
~ NNNNK

KJJ


 RR , 

and the matrices 


I  are αα-dimensional unit matrices, the matrices maxmax

,

KK 

E have only one 

non-zero element equal to one at the indicated subscripts, 

    


  lKJKKKllllK

2/1

0,0,1,,
1 B , where    11  KKK  , and the 

elements of the potential energy matrix are 

             ΘRRΘRRVΘRR nnnnnnnn
cos)cos,,(cos 212121,vib 21212121

 
 V    (7) 

for J = 0 and  

 

           ΘRRΘRRVΘRR K

lnn

K

lnnKK

KnnKnn

cos)cos,,(cos 212121,

,rovib

2121

2121













V
 (8) 

for J > 0. 

In order to have a compact basis expansion, in the D
2
FOPI program  11

Rn  and 

 22
Rn  can be chosen to be “potential optimized” (PO) DVR functions,

12 - 14
 i.e., DVR 

functions obtained from the eigenfunctions of the 1D effective Hamiltonian 
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 ΘRRV
dR

d
H jj

jj

j ,;ˆ
2

1ˆ
2

2
D1




,   j, j’ = 1, 2 or 2, 1 with  ΘRRV jj ,;ˆ
  chosen to be a 

relaxed 1D potential, i.e.,  ΘRRV jj ,;ˆ
  is obtained by optimizing the jR   and Θ coordinates 

for each value of jR .  

It is worth making the following three comments.  (1) Since in the D
2
FOPI 

computations the distance-dependent basis functions are chosen to be DVR functions, the 

potential energy matrix is diagonal in the corresponding n1 and n2 indices, therefore it has a 

block-diagonal structure.  (2) The Legendre polynomials    Ll NlΘP ,...,1,0,cos0   and 

   1,...,1,,cos  L

K

l NKKKlΘP  are eigenfunctions of the Θ -dependent 




















Θ
Θ

Θ
cot

2

2

 and 





















Θ

j

Θ
Θ

Θ

z

2

2

2

2

sin

ˆ
cot  operators [see Eqs.(6)], respectively, 

with eigenvalues l(l+1).  (3) In the R1 embedding the matrices jj NN

j


R  (j = 1 or 2) can chosen 

to be calculated by the exact-DVR method for treating the singularities,
5
 therefore, seize to be 

diagonal. This, however, does not change the structure of the Hamiltonian matrix, while the 

same terms present in the bisector embedding are diagonal (using the exact-DVR method here 

would lead to a much more dense Hamiltonian matrix). Taking (1), (2), and (3) into account, 

an element of the N1N2NL×N1N2NL-dimensional vibH  matrix in the R1 embedding can be 

written as  

  

         

  

      ΘPΘqqVΘPll

ll

lnnlnnnnnn

NN

llnn

nn

NN

llnnnn

NN

llnnnn

NN

llnn

lnnlnnvibll

NN

Θnn

NN

nnll

NN

Θnn

NN

nn

nn

NN

llnnnn

NN

llnnlnnlnn

LLLL

cos)cos,,(cos1

1)()(

)()(

00

,,,2,,

,1,,,2,,,1,,

,,,2,,,1,

,2,,,1,,,vib

21221122

22

11

11

11

2222

22

1111

11

22

212122

22

1111

11

22

22

22

1111

11

222121

































































R

RKK

VKRKR

KKH

 , (9) 

while an element of the N1N2NLKmax×N1N2NLKmax-dimensional  pJK  1max  rovibH  

matrix with given J and p can be written as   
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 

       

   

1 1 2 2

2 2 1 1 1 1 2 21 2 1 2

1 1 2 2

2 2 1 1
1 1 2 2

1 1

2 2
1 1

rovib , , , 1 , , , 2 ,,

, , 1 , , 2
, , , ,

, 1 , 1 ,
, ,

( ) ( )

L L L L

N N N N

K K n n l l n n n n l l n nKn n l K n n l

N N N N N N N N

K K n n Θ K K n n Θ
n n l l n n l l

N N

K K n n K K
n n l l

    

   

  

 

         

   

   
   

 

    

  

  

 

H K K

R K R K

R B    

   

 

1 1

2 2
1 1

1 1

2 2 1 2 1 21 1

1 1 2 2

2 2 1 1 1 1 2 2

1 1

2 2
1 1

1 , 1
, ,

,

, , , 1 , ,,

, , , 1 , , , 2 ,
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where 
1nq  and 

2nq  are the n1th and n2th DVR points of the R1 and R2 coordinates, respectively.  

One can see from the above formulae that the matrix representation of the Hamiltonian has a 

very sparse and a priori known structure.  This makes the use of an iterative eigensolver, e.g., 

the Lánczos algorithm,
15-17

 straightforward for obtaining the required eigenpairs. 

 

II.1.3. Symmetry considerations 

It should be noted that apart form the use of symmetrized rotational basis functions for 

0J   calculations, symmetry can be exploited for the 0J   case also for systems of the AX2 

type. Computations within D
2
FOPI using the Jacobi or Radau coordinate systems in principle 

could be separated into two symmetry blocks by symmetry adopting the bending and the 

stretching type basis functions, respectively. So far the symmetrization is implemented only in 

Jacobi coordinates, which is straightforward when using Legendre basis, since the only term 

in the vibrational Hamiltonain matrix not diagonal in the Legendre basis indices is the last 

term in Eq. (9). This term can be separated into two blocks by realizing that it is zero if the 

two Legendre functions in the term have different parity. The reason for this is that the 

potential energy function is an even function of the cosΘ  coordinate, and when multiplied by 

Legendre functions of different, i.e., even and odd parity, the product is an odd function 

which has zero integral on the symmetric interval [–1,1]. 
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II.1.4. Applications 

II.1.4.1. High accuracy vibrational energy levels of H2O up to near dissociation 

Detailed knowledge of the spectroscopy of the water molecule is fundamental to a 

wide variety of scientific and engineering applications.
18

 Due to its extreme importance, high-

resolution spectra of the water isotopologues have been studied extensively.
19 , 20

 

Computational methods to study the rovibration states of water up to dissociation for a given 

potential energy surface (PES), although computationally demanding, have been available for 

more than a decade.
21,22,23

 However, as also noted in Ref. 21, the available potential energy 

surfaces used in those earlier computations were not designed to be accurate in the high-

energy regions approaching dissociation. Thus results obtained using these earlier PESs 

should be treated with caution.  

Experimentally, higher-energy regions of the water potential started to be probed 

systematically by Rizzo et al. using two-
24,25

 and three-photon
25,26,27,28

 excitation schemes. 

These studies give insight into some of the vibrational states of H2O all the way to 

dissociation, but they are sensitive only to states which are accessed by the excitation scheme 

applied. The ability to reach the vibrational levels all the way to dissociation represents a 

major advance; however, so far only a minority of the states could be observed. The lack of 

direct experimental measurement of higher vibrational states of water does not necessarily 

mean that such states are of no interest. For example, recent observations of cometary 

emission spectra suggest that highly excited vibrational states of water are naturally populated 

in comets,
29

 although the mechanism for this is unknown.  

In a recently published paper
30

 a complete list of computed bound vibrational energy 

levels for water was presented almost all the way to dissociation obtained using a new, 

accurate, global, ab initio PES. Nuclear motion calculations were performed using several 

codes, including the D
2
FOPI code I developed, in order to validate the computed results. 

Omitting the computational details and some other aspects of the article concerning quantum 

label assignment of the vibrational band origins (VBO), only a limited amount of the results 

are summarized here. The computations converged energy levels to better than 1 cm
–1

, with 

the exception of an even symmetry state at about 40570 cm
–1

 which shows considerable 

sensitivity to the number of angular basis functions used. Energy levels computed with the 

different codes agreed to better than 1 cm
–1

 for all the VBOs reported. Altogether 1150 VBOs 

are supported by the PES chosen, with the highest one being at 41083 cm
–1

. The last bound 

state assigned by the computations of even symmetry is at 41082.75 cm
–1

, it is (19 0 0) in 
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normal-mode notation. The last assigned bound state of odd symmetry, (18 0 1), is at 

41082.78 cm
–1

. The results presented above show that the D
2
FOPI protocol which is realized 

in a well developed and optimized code is an effective tool for scientific applications. 

II.1.4.2. High accuracy rovibrational energy levels of H3
+
 and its isotopologues 

H2D
+
 and D2H

+
 

 H3
+
 has always been a benchmark system for high-level electronic-structure 

computations, see, for example Refs. 31, 32 and 33.  Naturally, H3
+ 

has also been a test case 

for polyatomic nuclear-motion computations starting with the work of Carney and Porter.
34

 

The importance of ab initio computations can be appreciated by the fact that the first 

laboratory observation of the H3
+
 infrared spectrum

35
 and the first astronomical detection of 

H3
+
 in the ionosphere of Jupiter

36
 both relied on theoretical predictions. Despite the simplicity 

of H3
+
, its (ro)vibrational spectrum in the visible region provided a considerable challenge for 

theory. Once the barrier to linearity at 10000 cm
–1 

is exceeded on the ground-state PES, the 

vibrations become floppy and sample vast regions of the PES. Experiments were limited, 

since as they advanced beyond this barrier, they struggled with the strong decrease of all 

spectral intensities by about a factor of a million compared to the fundamental transition,
37

 

while former first-principles predictions became increasingly inaccurate and lost their ability 

to guide experimental line searches and spectral identifications.
38

 

Recent advances
39,40

 in experiment and theory led to a remarkable breakthrough in the 

spectroscopy of H3
+
 and its isotopologues through an international collaboration I participated 

in. Experimentally, advances in the sensitivity of ion trap spectroscopy on H3
+
  were achieved 

allowing for the measurement of the frequencies of (ro)vibrational transitions extending far 

into the visible spectral range. Theoretically, calibration-quality ab initio adiabatic PESs have 

been determined for all isotopologues of the molecular ion H3
+
. The Born-Oppenheimer 

electronic structure computations used optimized explicitly correlated shifted Gaussian 

functions, and diagonal Born-Oppenheimer corrections (DBOC) were computed from the 

accurate electronic wave functions. Nuclear-motion computations utilizing this PES were 

carried out up to the energy region of 16000 cm
−1

 using several codes, including a modified 

version of D
2
FOPI which makes explicit allowance for the inclusion of non-adiabatic effects 

by using different rotational and vibrational masses, as proposed in Ref. 41. This simple 

model results in an additional term in the Hamiltonian operator, which, however, does not 

change the structure of the Hamiltonian matrix when using the D
2
FOPI protocol. Therefore 

the implementaion I had to perform becomes rather straightforward. 
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Vibrational energy computations for the H3
+
 molecule agree within the different codes 

to better than 0.01 cm
–1

 and reproduce experimental transitions with a standard deviation of 

about 0.1 cm
–1

. The rovibrational transition frequencies for H3
+
, H2D

+
 and D2H

+
, when 

compared with high resolution measurements, reproduce all the known rovibrational levels of 

the H3
+ 

isotopologues considered to better than 0.2 cm
−1

. This represents an order-of-

magnitude improvement compared to previous studies of transitions in the visible.  

Tables 1 and 2 show some selected rovibrational energy levels obtained from D
2
FOPI 

calculations and their comparison to experimental energy levels obtained with the Maesured 

Active Rotational-Vibrational Energy Levels (MARVEL) procedure
42

 for H2D
+
 and D2H

+
, 

respectively. Choosing the MARVEL energy levels for comparison was motivated by the fact 

that the active database approach of MARVEL provides the most relaible experimental values 

up to date, provided there is a sufficient number of experimental data available. Computations 

presented in Tables 1 and 2  were carried out employing a vibrational basis set of (25,25,25), 

whereby (n1,n2,np) means n1 and n2 PO spherical-DVR functions (with 200 primitive spherical 

functions) for the two distance-type and np Legendre basis functions for the angle-type 

coordinates. Naturally, a complete set of 2
 
J + 1 rotational basis function were used in all 

cases.  Following the notation of Ref. 5, the spherical oscillator basis functions of the R1 and 

R2 coordinates had parameters max

1R 5.5 bohr and max

2R 5.5 bohr, respectively. For the 

inclusion of the nonadiabatic effects in the simple model of Ref. 41, vibrational masses were 

chosen to be Moss masses,
43 , 44

 i.e. mD,vib=2.013810 u and mH,vib=1.007537 u, while for 

rotational masses the nuclear masses mD,rot=2.013550 u and mH,rot=1.007276 u were used. 

As one might observe in Tables 1 and 2, experimental and computed energy levels agree 

very well for both molecules. The theoretical error with respect to experiment seems to be 

generally larger for H2D
+
, which is probably originating from the model used to take non-

adiabatic effects into account. It is noted, that in the case of D2H
+
, some of the MARVEL 

energies determined appear to be incorrect and were omitted. This is discussed in more detail 

in section Sec. II.2.5.. 
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Table 1. Selected rovibrational energy levels of H2D
+ 

obtained from D
2
FOPI calculations 

(E
D2FOPI

) and from experiment with the MARVEL procedure (E
MARVEL

), all given in cm
–1

. 

Differences (ΔE) between the two sets of energies along with rotational quantum numbers (J) 

are also given. 

EMARVEL ED2FOPI ΔE J EMARVEL ED2FOPI ΔE J EMARVEL ED2FOPI ΔE J 

45.70 45.70 0.00 1 2568.48 2568.34 0.14 2 4343.47 4343.43 0.04 1 

60.03 60.03 0.01 1 2569.57 2569.45 0.13 2 4361.67 4361.63 0.04 1 

72.46 72.46 0.00 1 2580.28 2580.29 -0.01 3 4412.39 4412.34 0.05 2 

131.65 131.64 0.02 2 2610.73 2610.59 0.14 3 4466.79 4466.75 0.04 2 

138.86 138.84 0.02 2 2618.59 2618.45 0.14 3 4512.57 4512.43 0.13 1 

175.94 175.94 0.00 2 2651.46 2651.46 0.00 3 4555.91 4555.74 0.17 2 

218.65 218.66 -0.01 2 2664.26 2664.14 0.12 3 4677.27 4677.09 0.17 1 

223.86 223.87 -0.01 2 2710.27 2710.15 0.12 3 6287.67 6287.62 0.05 0 

251.41 251.38 0.04 3 2717.33 2717.21 0.12 3 6330.97 6330.92 0.05 1 

254.07 254.02 0.05 3 2820.80 2820.69 0.11 3 6342.85 6342.79 0.05 1 

326.17 326.16 0.01 3 2820.82 2820.71 0.11 3 6363.82 6363.77 0.05 1 

354.78 354.78 0.00 3 2992.51 2992.49 0.01 0 6400.72 6400.56 0.16 0 

376.34 376.36 -0.01 3 3038.18 3038.16 0.02 1 6441.92 6441.75 0.17 1 

458.35 458.36 -0.02 3 3050.50 3050.48 0.02 1 6466.53 6466.38 0.15 1 

459.83 459.85 -0.02 3 3063.31 3063.30 0.01 1 6479.44 6479.29 0.16 1 

2205.88 2205.87 0.00 0 3123.32 3123.29 0.03 2 6519.07 6518.90 0.17 2 

2246.70 2246.68 0.01 1 3128.88 3128.85 0.03 2 6537.05 6536.90 0.15 2 

2258.80 2258.78 0.02 1 3167.13 3167.11 0.01 2 6622.44 6622.25 0.19 3 

2278.43 2278.42 0.00 1 3203.84 3203.84 0.01 2 6646.29 6646.15 0.15 2 

2318.37 2318.33 0.04 2 3209.82 3209.81 0.00 2 6649.45 6649.30 0.15 2 

2322.75 2322.70 0.05 2 3241.30 3241.25 0.05 3 6991.58 6991.57 0.00 0 

2335.44 2335.30 0.14 0 3243.00 3243.02 -0.02 3 7039.36 7039.36 0.01 1 

2379.38 2379.37 0.01 2 3317.07 3317.05 0.02 3 7046.71 7046.70 0.01 1 

2383.97 2383.83 0.14 1 3339.86 3339.84 0.01 3 7064.84 7064.83 0.00 1 

2402.79 2402.66 0.14 1 3363.90 3363.90 0.00 3 7123.23 7123.21 0.02 2 

2409.32 2409.18 0.13 1 3434.90 3434.90 0.00 3 7126.87 7126.85 0.02 2 

2415.46 2415.42 0.04 3 3436.84 3436.85 -0.01 3 7177.98 7177.97 0.01 2 
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Table 2. Selected rovibrational energy levels of D2H
+ 

obtained from D
2
FOPI calculations 

(E
D2FOPI

) and from experiment with the MARVEL procedure (E
MARVEL

), all given in cm
–1

. 

Differences (ΔE) between the two sets of energies along with rotational quantum numbers (J) 

are also given. 

EMARVEL ED2FOPI ΔE J EMARVEL ED2FOPI ΔE J EMARVEL ED2FOPI ΔE J 

34.92 34.92 0.00 1 2136.24 2136.21 -0.03 1 2930.82 2930.78 -0.04 3 

49.25 49.26 0.00 1 2136.50 2136.44 -0.05 3 2934.55 2934.51 -0.04 3 

57.99 57.99 0.00 1 2145.62 2145.58 -0.04 2 2985.09 2985.06 -0.03 3 

101.72 101.72 0.00 2 2149.56 2149.52 -0.04 2 3015.81 3015.78 -0.03 3 

110.26 110.26 0.00 2 2194.06 2194.03 -0.04 2 3028.50 3028.48 -0.02 3 

136.36 136.37 0.00 2 2202.78 2202.74 -0.04 2 3106.59 3106.57 -0.02 3 

179.16 179.17 0.01 2 2205.80 2205.76 -0.04 3 3107.23 3107.22 -0.01 3 

182.06 182.07 0.01 2 2225.16 2225.12 -0.03 2 3871.38 3871.30 -0.07 1 

196.10 196.09 -0.01 3 2236.36 2236.32 -0.04 3 3881.70 3881.63 -0.07 1 

200.03 200.02 -0.01 3 2253.05 2253.01 -0.04 3 3909.91 3909.84 -0.08 2 

251.30 251.31 0.00 3 2254.67 2254.64 -0.03 2 3921.97 3921.89 -0.08 2 

283.32 283.32 0.01 3 2257.58 2257.56 -0.03 2 4042.77 4042.71 -0.06 0 

296.05 296.05 0.00 3 2297.58 2297.54 -0.04 3 4058.48 4058.42 -0.06 1 

377.72 377.76 0.03 3 2306.74 2306.70 -0.04 3 4060.79 4060.75 -0.05 0 

1968.16 1968.12 -0.05 0 2339.73 2339.71 -0.03 3 4062.89 4062.83 -0.06 1 

1998.54 1998.49 -0.05 1 2350.97 2350.94 -0.03 3 4097.09 4097.00 -0.10 2 

2014.11 2014.06 -0.05 1 2389.50 2389.47 -0.02 3 4097.90 4097.84 -0.07 2 

2027.05 2027.01 -0.04 1 2397.50 2397.48 -0.02 3 4101.08 4101.01 -0.06 1 

2055.10 2055.05 -0.05 2 2446.18 2446.18 -0.01 3 4119.11 4119.07 -0.04 1 

2062.94 2062.89 -0.05 2 2771.51 2771.49 -0.03 1 4122.95 4122.90 -0.05 1 

2078.43 2078.40 -0.04 0 2785.33 2785.30 -0.03 1 4130.79 4130.75 -0.05 1 

2099.92 2099.88 -0.04 2 2793.95 2793.92 -0.03 1 4179.77 4179.72 -0.05 2 

2118.59 2118.55 -0.04 1 2837.55 2837.52 -0.04 2 6482.03 6481.96 -0.08 1 

2128.70 2128.66 -0.04 1 2845.72 2845.68 -0.04 2 

 

    

 2133.50 2133.45 -0.05 3 2915.60 2915.58 -0.02 2         

 

II.1.5. Concluding remarks 

 As a short summary for this chapter, the theoretical background of the D
2
FOPI 

algorithm for computing (ro)vibrational eigenpairs of triatomic molecules was presented 

along with demonstrating its efficiency through computation of nearly all the vibrational band 

origins of the H2O molecule up to dissociation within cm
–1

 convergence and through the state 

of the art determination of rovibrational states of the H3
+
, H2D

+
 and D2H

+
 molecules with an 

accuracy to better than 0.2 cm
–1

 with respect to the available experimental values. 
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II.2. Assigning approximate quantum numbers 

In the fourth age of quantum chemistry
45

 codes implementing the variational solution of 

the time-independent nuclear-motion Schrödinger equation become more and more standard 

tools of theoretical molecular spectroscopy. Assigning exact and approximate quantum 

numbers to the large collection of computed eigenstates is important to turn data into 

knowledge, solve chemically significant problems, and develop self-consistent spectroscopic 

databases built upon spectroscopic networks.
42, 46

 Therefore, during the developing of a 

program suite on nuclear-motion computations, it is very useful to implement a protocol 

assigning approximate quantum numbers to the molecular states. To the best of my 

knowledge, assigning rovibrational quantum numbers in a theoretically rigorous manner can 

only be achieved by the rigid rotor decomposition (RRD) scheme of Ref. 47. 

 

II.2.1. Theoretical background of the rigid rotor decomposition (RRD) 

scheme 

The following description of the RRD scheme follows closely that given in Ref. 47.  

For a closed-shell molecule, in the absence of an external field and when neglecting 

hyperfine interactions, the J rotational quantum number is a good quantum number for the 

description of the overall molecular rotation; thus, the labeling of the nuclear motion states 

can be done independently for different J values.  Let us assume that the following three 

criteria are satisfied for an asymmetric-top molecule under investigation. (1) Given a J 

rotational quantum number, the rovibrational time-independent Schrödinger equation 

 rovib
rovibrovibrovibrovib ,...,2,1,ˆ nnEH nnn   is solved for nrovib number of eigenpairs.  

Furthermore, the rovibrational 
rovib

nE  energy levels and 
rovib

n  wave functions (functions of 

the rotational coordinates and the vibrational internal coordinates) are both available, but lack 

rovibrational quantum labels.  (2) For the given J rotational quantum number, the rigid-rotor 

Schrödinger equation 
RRRRRRRRˆ
nnn EH  ,  12,...,2,1  Jn  is also solved, providing 2J + 1 

rotational wave functions for each vibrational state (for each vibrational state, a different set 

of effective rotational constants could be used). These wave functions depend on the 

rotational coordinates, and each of them can be characterized by a unique set of rotational 

quantum labels.  In the case of asymmetric tops, these quantum numbers are {J, Ka, Kc}, 

where J is the quantum number corresponding to the overall rotational motion of the 

molecule, while Ka and Kc correspond to the projections of the rotational angular momentum 
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on the body-fixed z axis for the prolate and oblate symmetric-top limits of the rigid rotor, 

respectively. (3) The J = 0 pure vibrational Schrödinger equation 

 vib vib vib vib

vib
ˆ , 1,2,...,n n nH E n n    is solved for nvib eigenpairs. A unique vibrational label 

is assigned to each vibrational eigenstate, which might be obtained for low-energy states 

using the normal mode decomposition (NMD) protocol described in Ref. 47. 

The RRD scheme is based on a   vib12 nJ  -dimensional ,RRvibRRvib
lklk    

   12,...,2,1,,...,2,1 vib  Jlnk , orthonormal, direct-product basis. Therefore, each direct-

product basis function has a unique rovibrational label. 

The next step is the computation of the overlaps 

     12,...,2,1,,...,2,1,,...,2,1, vibrovib
RRvibrovib

,;  JlnknnS lknlkn  .   (11) 

Then, for each 
rovib

n  the quantities 





12

1

2
,;;

J

l

lknkn SP  are evaluated.  These quantities are 

interpreted as the “total overlap” of the kth vibrational state and the nth rovibrational state.  

For each value of n, 
max

nk  is determined, max; nkn
P  being the largest of the knP ;  values.  Finally, 

rovib

n  is labeled with the rovibrational quantum numbers of the direct-product basis function 

with which its 
lkn n

S
,; max  overlap is the largest.  Naturally, to obtain unique labels 

  rovibvib12 nnJ   must hold.   

II.2.2. The RRD package for D
2
FOPI 

An RRD program was developed in order to execute an RRD analysis based on D
2
FOPI 

computations. As input, the RRD code needs the D
2
FOPI vibrational and rovibrational 

energies along with the wave functions represented in the basis of the D
2
FOPI computation. 

Vibrational quantum labels are also needed as input. Beyond the D
2
FOPI (ro)vibrational 

output files, the RRD package naturally requires rigid-rotor (RR) wavefunctions with 

corresponding labels. The computation of the rigid-rotor eigenpairs is performed by 

representing the rigid-rotor Hamiltonian on the same 

     JJppKpC Jp

MK ,1,...,1,,1,0,,,   rotational basis which is used for the 

rovibrational D
2
FOPI calculations in order to make the RRvibrovib

,; lknlknS    RRD overlap 

computations straightforward.  The RR Hamiltonian reads as 

  2222222RR ˆˆˆˆˆˆˆˆ
  JJJJJCJBJAH zzyx  , (12) 
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where A, B, and C are rotational constants for the given vibrational state, iĴ  is the ith 

component of the total angular momentum operator, 
2222 ˆˆˆˆ
zyx JJJJ  ,  BA

2

1
 , 

 BAC 
2

1
 ,  BA

4

1
 , and yx JiJJ ˆˆˆ  .  In the basis of the   ,,Jp

MKC  

symmetry-adapted rotational basis functions, the (2J+1)×(2J+1)-dimensional rotH  matrix is 

block diagonal having a J- and a (J+1)-dimensional block for p = 1 and p = 0, respectively.  

An element of the Hamiltonian can be written as  

       2 2 2 2

rot , , ,, , , ,
p p p p z p ppK p K K K K K K K

             
   H J J J J     (13) 

where  

  )1(,,

2   JJKKKK J ,   2

,,

2 KKKKKz   J , and 

 
  )1(1)2)(1()1()1()1(1

)2)(1()1()1()1(1

1,1,2,0,2,

0,2,2,,

22


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

JJKKJJKKJJ
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p

KKKKKK

KKKKKK



JJ

with  JJppK ,1,...,1,  . 

II.2.3. Embedding dependence of the RRD 

RRD overlaps 
lkn n

S
,; max  depend on the embedding of the molecule-fixed axis system 

chosen.  Investigation of this dependence is the topic of the present section. 

RRD overlaps for the H2O molecule, chosen as our test system, are determined using 

Jacobi coordinates with either the R1 or bisector embeddings,
4
 and employing the D

2
FOPI 

protocol. Although in the case of the bisector embedding the use of Radau coordinates might 

seem to be a better choice for computing RRD overlaps, test computations showed that RRD 

coefficients obtained with Radau coordinates are essentially identical with the ones obtained 

using Jacobi coordinates. Computations were also performed with valence internal 

coordinates and an Eckart embedding.
48

 In the bisector embedding, the x-axis of the body-

fixed frame is chosen to bisect the angle between the interatomic vector of the diatom (O-H) 

and the vector connecting the center of mass of the diatom with the third atom (H).  In the 

Eckart embedding, the body-fixed frame is chosen such that the nuclei satisfy the Eckart 

conditions.
48

  

In order to make the body-fixed embeddings closer to the principal-axis system, in 

which the rigid-rotor computations were carried out, unorthodox choices were made for the R1 

and bisector embeddings during the present study. Within the R1 embedding the molecule was 
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placed in the (z,x)-plane with the body-fixed z-axis chosen to lie along the two H atoms, the x-

axis “looking towards” the O atom in the plane of the molecule, and the y-axis chosen to give 

a right-handed coordinate system.  In the bisector embedding the molecule was placed in the 

(z,x)-plane with the body fixed x-axis chosen to bisect the HOH bond angle in symmetric 

configurations.  

In the case of the Eckart embedding, the computations were based on the transformation 

method proposed in Ref. 49 and utilizing a different code, i.e., using the GENIUSH (GEneral 

code with Numerical, Internal coordinate, User-Specified Hamiltonians) program suite which 

uses a fully numerical grid representation of the Hamiltonian. Interested readers should 

consult Refs. 50 and 51 for details on the GENIUSH protocol. Although the explicit form of 

the Hamiltonian in the Eckart embedding with Jacobi coordinates has been derived for the 

triatomic case,
52

 the fully numerical GENIUSH approach was chosen for the sake of minimal 

programming work. 

 

II.2.3.1. Computational details 

As written earlier, the test system chosen for the investigations on the embedding 

dependence of the RRD is the H2
16

O isotopologue of the water molecule. The PES of Ref. 53 

was employed in all nuclear motion computations.  This choice makes comparison of the 

present results with those of the BT2 linelist
54

 straightforward. Masses mO=15.9994 u and 

mH=1.00794 u were used throughout the RRD analysis. 

For both the determination of the 0J  (vibrational) and 0J  (rovibrational) 

eigenpairs in the R1 and bisector embeddings, the D
2
FOPI program suite

5
 was used.  For the 

rigid-rotor computations the rotational constants were chosen, in cm
1

, as A = 14.5964, B = 

9.5274, and C = 27.4348 when using the R1 embedding, while A = 9.5274, B = 14.5964, and C 

= 27.4348 when using the bisector embedding.  The same rotational constants are employed 

for all vibrational states. It appears to be natural to compute RRD overlaps using the 

vibrationally-averaged rotational constants of each vibrational state.  Our computations in the 

R1 embedding for the J = 15 case showed, however, that even a major change in the rotational 

constants, i.e., employing A = 15.2770, B = 8.4600, and C = 73.0396 which correspond to the 

(0 5 0) excited bending state, resulted in no change in the list of RRD labels which could be 

used for assignation (later introduced as “well-defined” RRD labels).  

When using the R1 or bisector embeddings, the variational (ro)vibrational computations 

on the H2O molecule were performed using (15,20,30) and (20,25,35) vibrational basis 
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functions, respectively, whereby (n1,n2,np) means n1 and n2 PO spherical-DVR functions (with 

300 primitive spherical functions) for the two distance-type and np Legendre basis functions 

for the angle-type coordinates.  Naturally, a complete set of 2
 
J +1 rotational basis functions 

was used in all cases.  Following the notation of Ref. 5, the spherical oscillator basis functions 

of the R1 and R2 coordinates had parameters max

1R 4.6 bohr and max

2R 3.2 bohr, 

respectively.   

When using the Eckart embedding via the GENIUSH algorithm, valence coordinates 

(OH bond lengths r1 and r2, HOH bond angle Θ) were employed.  The applied direct-product 

vibrational basis consisted of 20 PO Hermite-DVR functions (with 80 primitive Hermite 

polynomials) for the two stretching coordinates and 30 Legendre-DVR functions for the 

bending coordinate. The GENIUSH computations utilized Wang combinations of the well-

known symmetric top eigenfunctions as rotational basis functions.   

 

II.2.3.2. Embedding, energy, and J 
 
dependence of the RRD scheme 

Following the RRD scheme, rovibrational quantum labels were generated for the H2O 

molecule for all three embeddings and for rotational quantum numbers J = 5, 10 and 15 for 

30×(2J+1) rovibrational eigenstates for each J.  Vibrational normal-mode labels (n1
 
n2

 
n3) 

were taken from Ref. 30 by matching energies, which is straightforward for the vibrational 

states considered, while the rotational asymmetric top limit 
caKKJ  labels were generated 

during the rigid-rotor computations following the standard rigid-rotor labeling scheme.
11

    

In terms of rovibrational states being the linear combination of the direct-product 

functions obtained from vibrational and rigid-rotor eigenfunctions, rovibrational states 

become more “mixed” with increasing energy and J rotational quantum number. This 

naturally leads to less dominant RRD overlaps (see Eq. (11)).  Figs. 2, 3 and 4 show the 

percentage of clearly assignable rovibrational states as a function of rovibrational energy for 

J = 5, 10, and 15, respectively.  Each figure includes results for three embeddings.  RRD 

labels were considered “well defined” if for the given rovibrational state the square of the 

largest 
lkn n

S
,; max  coefficient from Eq. (11) exceeded 0.5, as implied by the Hose–Taylor 

theorem.
55

  As expected, less and less RRD labels are “well defined” with increasing J 

quantum number and energy. Nonetheless, for a wide range of both of these parameters a 

large number of “well defined” labels can be assigned via the RRD protocol.  Out of the total 
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of 1865 states included in Figs. 2, 3 and 4, 973, 1211 and 1288 states could be given a “well 

defined” status when using the R1, bisector, and Eckart embeddings, respectively.   

It is to be noted that the choice of 0.5 as a lower limit for the square of the largest 

lkn n

S
,; max  coefficients for considering an RRD label “well defined” is not the only one possible. 

With a lower threshold, one could extend the range of applicability of the RRD scheme 

considerably; however, this might lead to embedding-dependent quantum labels and in a few 

cases to duplicate labels. For example, choosing a cut-off value of 0.33, one obtains 1368, 

1566, and 1596 well-defined labels for the R1, bisector, and Eckart embeddings, respectively, 

but out of these 10, 17, and 25 are assigned twice and in 21 cases the assigned RRD labels are 

embedding dependent, i.e., the assigned labels differ in the different embeddings.  

Another strategy is to consider an RRD label well defined if the second largest 
lkn n

S
,; max  

overlap is smaller than some portion of the largest 
lkn n

S
,; max  overlap.  Although with this 

method the number of well-defined labels can be dramatically increased, it leads, 

unfortunately, to some duplicate labels.  Curing this problem needs special attention and the 

procedure cannot be automated.  

As seen clearly in Figs. 2, 3 and 4, the RRD coefficients depend noticeably on the 

embedding used for the rovibrational computations. Naturally, one expects and indeed 

experiences the least RRD “mixing” when the coupling between the rotational and vibrational 

coordinates is minimal, i.e., in the Eckart embedding. The Eckart embedding is clearly the 

best choice especially at the lower end of the spectrum. Although the Eckart embedding 

minimizes the coupling between molecular rotations and vibrations, Fig. 4 shows the 

“breakdown” of the Eckart embedding farther away from the equilibrium structure. At higher 

rotational excitation and energies rovibrational coupling is considerable even in the Eckart 

embedding, which is represented by the small maximum RRD coefficient values in such 

spectral regions. For the computation of rovibrational eigenstates an embedding different 

from the Eckart one might be more efficient.  In a given application, one has to find a balance 

between computational efficiency and “mixing” of the RRD coefficients and choose the 

embedding accordingly. 

Finally, the relation between monodromy
56-59

 and RRD label assignment is examined.  

Quantum monodromy,
60

 which leads to a change in the energy level structure when a bent 

molecule starts to sample linear configurations, was discussed for the H2
16

O water 

isotopologue in Ref. 61.  As noted by Zobov et al.,
61

 “monodromy in quantum mechanical 
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systems implies the absence of a single, smoothly varying set of quantum numbers with which 

to characterize the system.”  Monodromy might explain the breakdown of the RRD protocol 

when high excitation of the bending mode is involved. Rovibrational states for the H2O 

molecule with vibrational labels, which include excitations for only a single normal mode, 

were included in Fig. 5 to compare the energy dependence of the 
lkn n

S
,; max  overlap values for 

rovibrational states with different types of vibrational excitation. Inspecting the red squares in 

Fig. 5, standing for rovibrational states with the largest 
lkn n

S
,; max  overlap within a given 

vibrational state, one can observe that states having pure bending excitations (plots with 

(0
 
n

 
0)) show a breakdown in the 

lkn n

S
,; max  overlap values from around 10000 cm

–1
, close to the 

barrier to linearity of water.
62-64

  Thus, it seems that monodromy might at least partially 

explain the breakdown of the RRD method for rovibrational states with high bending 

excitation.  Such a breakdown is not observable for the symmetric (n
 
0

 
0) and antisymmetric 

(0
 
0

 
n) stretching states.  Nevertheless, as the n and J values increase the stretching states also 

start exhibiting smaller and smaller maximum RRD coefficients. 

 

 

Figure 2. Percentage of clearly assignable rovibrational states during the RRD analysis as a 

function of rovibrational energy in the R1, bisector, and Eckart embeddings, for J = 5 

rotational excitation. 
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Figure 3. Percentage of clearly assignable rovibrational states during the RRD analysis as a 

function of rovibrational energy in the R1, bisector, and Eckart embeddings, for J = 10 

rotational excitation. 

 

Figure 4. Percentage of clearly assignable rovibrational states during the RRD analysis as a 

function of rovibrational energy in the R1, bisector, and Eckart embeddings, for J = 15 

rotational excitation. 
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Figure 5. The largest RRD coefficients obtained in the Eckart embedding as a function of 

rovibrational energy. (n 0 0), (0 0 n), and (0 n 0) refer to approximate vibrational quantum 

labels for symmetric stretch, antisymmetric stretch, and bend, respectively.  In all these cases 

the states included in the given plot have vibrational quantum labels such that all normal 

modes but the one excited by n quanta are in their ground state.  Blue rectangles stand for 

rovibrational states while red squares depict rovibrational states with the largest RRD overlap 

within a given vibrational manifold.   

 

II.2.4. Validation of quantum labels for H2O, comparison with the BT2 

linelist 

One of the linelists available for H2
16

O is the so-called BT2 linelist.
54

  When comparing 

the “well defined” rovibrational labels of H2
16

O obtained using the RRD in the Eckart 

embedding, with the labels found in the BT2 linelist, one can observe and appreciate the 

usefulness of the RRD labeling protocol.   

Based on this comparison, one might divide the calculated rovibrational states into 

five groups: (a) states which are assigned both in the BT2 and during the RRD but have 

different labels in the two cases, (b) rovibrational states which are assigned both in the BT2 

linelist and during the RRD and have the same labels in the two cases, (c) states which have 

an assigned label in the BT2 linelist but are not assigned during the RRD, (d) states which are 

assigned during the RRD but have no assignment in the BT2, and finally (e) states which are 

not assigned in either the BT2 or during the RRD.  In Fig. 6 rovibrational states of H2O are 

separated according to their (a)-(e) type and are marked on the figure based on their energy.   
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As expected, for lower-energy states both the RRD scheme and the protocol employed 

when generating the BT2 linelist provide assigned labels which are in great agreement.  It is 

only at around 5500 cm
1

 that a few states start to show “mixing” in the RRD and thus cease 

to be “well defined”.   

The few dozen cases where both BT2 and RRD have assigned but different labels need 

special attention and need to be ispected individually. The RRD scheme is thus useful not 

only to provide labels for yet unassigned states but also to validate existing labels.   

The usefulness of the RRD scheme can especially be appreciated from about 10000 

cm
1

, where the BT2 linelist starts lacking assigned labels.  From around 10000 cm
1

 up to 

around 15000 cm
1

, there are many states which don’t have BT2 labels, but can be assigned 

one via the RRD scheme.  

The number of states lacking RRD labels, as seen in Fig. 6, naturally increases with 

energy. One might notice that from around 10000 cm
-1

 states lacking any assignment start 

appearing quite suddenly. The explanation of this behavior may again involve arguments 

based on quantum monodromy.
61

  

 

Figure 6. J = 5, J = 10, and J = 15 rovibrational states of H2O separated according to their (a)-

(e) type (see Sec. VI) and marked on the figure based on their energy. 

 

II.2.5. Validation of quantum labels for H2D
+
 and D2H

+
 

 As detailed on the example of the BT2 linelist in the previous section, the rigorous 

approximate quantum label assignation scheme of the RRD protocol provides a powerful tool 

for validating existing quantum labels of molecules. This validation is rather important, for 

example, when one deduces experimental energy levels from measured transitions using the 

MARVEL procedure, since the method relies strongly on selection rules realized by the 

allowable changes in rovibrational quantum numbers. For this reason, the RRD analysis based 

on D
2
FOPI computations was used to validate previously assigned quantum labels for H2D

+
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and D2H
+
. The basis sets and PES used for the (ro)vibrational computations were identical to 

the ones detailed in Sec. I.4.2., while for the computation of the rigid rotor eigenfunctions, the 

rotational constants A = 43.362, B = 16.610, C = 29.143 and A = 21.869, B = 13.057, C = 

36.243, all in cm
–1

, were used for H2D
+
 and D2H

+
, respectively.  Out of the 75 experimentally 

available and assigned states considered for H2D
+
,
 
70 could be assigned a well defined RRD 

label which all agreed with the previous labels used by MARVEL. The situation is different 

for D2H
+
, where out of the 74 considered states 73 had a well defined RRD label, from which 

5 cases were found to be problematic, i.e., the MARVEL energies and D
2
FOPI energies differ 

significantly.  

Table 3 and 4 summarizes all the considered rovibrational states, their RRD overlaps, 

rovibrational symmetry, and finally the MARVEL and RRD assigned quantum labels for 

H2D
+
 and D2H

+
, respectively. In Table 3 the experimental energy levels and quantum labels 

show outstanding agreement with their ab initio counterparts, H2D
+
 seems to be precisely 

characterized and validated for the states considered. As for D2H
+
, the situation is similar for 

the majority of the considered states; however, the 5 states having D
2
FOPI energies of 

2871.44 cm
–1

, 2912.67 cm
–1

, 6465.95 cm
–1

, 6538.40 cm
–1 

and 6567.70 cm
–1

, differ from 

MARVEL counterparts by 0.19 cm
–1

, 0.57 cm
–1

, 58.97 cm
–1

, 32.47 cm
–1

 and 166.71 cm
–1

, 

respectively. They need special attention due to the fact that the average absolute energy 

difference when excluding these 5 states is 0.03 cm
–1

 with a standard deviation of 0.02 cm
–1

. 

Since all the D
2
FOPI results are based on the same ab initio protocol, they should have about 

the same error in such small spectral region. Therefore the outliers probably originate from 

missassignments of some transitions in the original sources employed in the MARVEL 

procedure. 
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Table 3. Rovibrational energies, vibrational normal mode (n1n2n3) and rotational asymmetric top (JKaKc) quantum 

labels, rovibrational symmetry (Symm) and largest RRD coefficients (RRD) for selected rovibrational states of 

H2D
+
, obtained with the MARVEL or the D

2
FOPI based RRD algorithms. Energies are given in cm

–1
, with 

respect to the zero point vibrational energy, symmetry labels refer to the irreducible representations of the 

C2v(M)
 
molecular symmetry group.

65
 

MARVEL D2FOPI MARVEL D2FOPI 

Energy (n1n2n3) 
 
   JKaKc Energy (n1n2n3) 

 
 JKaKc  Symm RRD Energy (n1n2n3) 

 
JKaKc Energy (n1n2n3) 

 
JKaKc Symm RRD 

45.70 0 0 0 

 

1 0 1 45.70 0 0 0 
 
1 0 1 B1 0.995 3063.31 1 0 0 

 

1 1 0 3063.30 1 0 0 

 

1 1 0 B2 1.000 

60.03 0 0 0 

 

1 1 1 60.03 0 0 0 
 
1 1 1 A2 0.995 3123.32 1 0 0 

 

2 0 2 3123.29 1 0 0 

 

2 0 2 A1 0.978 

72.46 0 0 0 

 

1 1 0 72.46 0 0 0 
 
1 1 0 B2 1.000 3128.88 1 0 0 

 

2 1 2 3128.85 1 0 0 

 

2 1 2 B2 0.977 

131.65 0 0 0 

 

2 0 2 131.64 0 0 0 
 
2 0 2 A1 0.980 3167.13 1 0 0 

 

2 1 1 3167.11 1 0 0 

 

2 1 1 A2 0.993 

138.86 0 0 0 

 

2 1 2 138.84 0 0 0 
 
2 1 2 B2 0.979 3203.84 1 0 0 

 

2 2 1 3203.84 1 0 0 

 

2 2 1 B1 0.995 

175.94 0 0 0 

 

2 1 1 175.94 0 0 0 
 
2 1 1 A2 0.994 3209.82 1 0 0 

 

2 2 0 3209.81 1 0 0 

 

2 2 0 A1 0.998 

218.65 0 0 0 

 

2 2 1 218.66 0 0 0 
 
2 2 1 B1 0.995 3241.30 1 0 0 

 

3 0 3 3241.25 1 0 0 

 

3 0 3 B1 0.742 

223.86 0 0 0 

 

2 2 0 223.87 0 0 0 
 
2 2 0 A1 0.999 3243.00 1 0 0 

 

3 1 3 3243.02 1 0 0 

 

3 1 3 A2 0.950 

251.41 0 0 0 

 

3 0 3 251.38 0 0 0 
 
3 0 3 B1 0.764 3317.07 1 0 0 

 

3 1 2 3317.05 1 0 0 

 

3 1 2 B2 0.783 

254.07 0 0 0 

 

3 1 3 254.02 0 0 0 
 
3 1 3 A2 0.954 3339.86 1 0 0 

 

3 2 2 3339.84 1 0 0 

 

3 2 2 A1 0.977 

326.17 0 0 0 

 

3 1 2 326.16 0 0 0 
 
3 1 2 B2 0.769 3363.90 1 0 0 

 

3 2 1 3363.90 1 0 0 

 

3 2 1 B1 0.765 

354.78 0 0 0 

 

3 2 2 354.78 0 0 0 
 
3 2 2 A1 0.979 3434.90 1 0 0 

 

3 3 1 3434.90 1 0 0 

 

3 3 1 A2 0.994 

376.34 0 0 0 

 

3 2 1 376.36 0 0 0 
 
3 2 1 B1 0.784 3436.84 1 0 0 

 

3 3 0 3436.85 1 0 0 

 

3 3 0 B2 0.806 

458.35 0 0 0 

 

3 3 1 458.36 0 0 0 
 
3 3 1 A2 0.995 4343.47 0 2 0 

 

1 1 1 4343.43 0 2 0 

 

1 1 1 A2 0.975 

459.83 0 0 0 

 

3 3 0 459.85 0 0 0 
 
3 3 0 B2 0.789 4361.67 0 2 0 

 

1 1 0 4361.63 0 2 0 

 

1 1 0 B2 1.000 

2246.70 0 1 0 

 

1 0 1 2246.68 0 1 0 
 
1 0 1 B1 0.968 4412.39 0 2 0 

 

2 1 2 4412.34 0 2 0 

 

2 1 2 B2 0.892 

2258.80 0 1 0 

 

1 1 1 2258.78 0 1 0 
 
1 1 1 A2 0.964 4466.79 0 2 0 

 

2 1 1 4466.75 0 2 0 

 

2 1 1 A2 0.968 

2278.43 0 1 0 

 

1 1 0 2278.42 0 1 0 
 
1 1 0 B2 1.000 4512.57 0 1 1 

 

1 1 1 4512.43 0 1 1 

 

1 1 1 B1 0.904 

2318.37 0 1 0 

 

2 0 2 2318.33 0 1 0 
 
2 0 2 A1 0.892 4555.91 0 1 1 

 

2 0 2 4555.74 0 1 1 

 

2 0 2 B2 0.746 

2322.75 0 1 0 

 

2 1 2 2322.70 0 1 0 
 
2 1 2 B2 0.887 4677.27 0 0 2 

 

1 1 1 4677.09 0 0 2 

 

1 1 1 A2 0.929 

2379.38 0 1 0 

 

2 1 1 2379.37 0 1 0 
 
2 1 1 A2 0.970 6330.97 0 3 0 

 

1 0 1 6330.92 0 3 0 

 

1 0 1 B1 0.948 

2383.97 0 0 1 

 

1 0 1 2383.83 0 0 1 
 
1 0 1 A2 0.952 6342.85 0 3 0 

 

1 1 1 6342.79 0 3 0 

 

1 1 1 A2 0.958 

2402.79 0 0 1 

 

1 1 1 2402.66 0 0 1 
 
1 1 1 B1 0.956 6363.82 0 3 0 

 

1 1 0 6363.77 0 3 0 

 

1 1 0 B2 1.000 

2409.32 0 0 1 

 

1 1 0 2409.18 0 0 1 
 
1 1 0 A1 1.000 6441.92 0 2 1 

 

1 0 1 6441.75 0 2 1 

 

1 0 1 A2 0.920 

2415.46 0 1 0 

 

2 2 1 2415.42 0 1 0 
 
3 0 3 B1 0.614 6466.53 0 2 1 

 

1 1 1 6466.38 0 2 1 

 

1 1 1 B1 0.913 

2568.48 0 0 1 

 

2 2 1 2568.34 0 0 1 
 
2 2 1 A2 0.960 6479.44 0 2 1 

 

1 1 0 6479.29 0 2 1 

 

1 1 0 A1 1.000 

2569.57 0 0 1 

 

2 2 0 2569.45 0 0 1 
 
2 2 0 B2 0.980 6519.07 0 2 1 

 

2 0 2 6518.90 0 2 1 

 

2 0 2 B2 0.725 

2580.28 0 1 0 

 

3 2 1 2580.29 0 1 0 
 
3 2 1 B1 0.728 6537.05 0 2 1 

 

2 1 2 6536.90 0 2 1 

 

2 1 2 A1 0.664 

2610.73 0 0 1 

 

3 0 3 2610.59 0 0 1 
 
3 0 3 A2 0.694 6622.44 0 2 1 

 

3 0 3 6622.25 0 3 0 

 

3 1 3 A2 0.535 

2618.59 0 0 1 

 

3 1 3 2618.45 0 0 1 
 
3 1 3 B1 0.711 6646.29 0 2 1 

 

2 2 1 6646.15 0 2 1 

 

2 2 1 A2 0.909 

2651.46 0 1 0 

 

3 3 1 2651.46 0 1 0 
 
3 3 1 A2 0.946 6649.45 0 2 1 

 

2 2 0 6649.30 0 2 1 

 

2 2 0 B2 0.965 

2664.26 0 0 1 

 

3 1 2 2664.14 0 0 1 
 
3 3 0 A1 0.656 7039.36 1 2 0 

 

1 0 1 7039.36 1 2 0 

 

1 0 1 B1 0.978 

2710.27 0 0 1 

 

3 2 2 2710.15 0 0 1 
 
3 2 2 B2 0.846 7046.71 1 2 0 

 

1 1 1 7046.70 1 2 0 

 

1 1 1 A2 0.982 

2717.33 0 0 1 

 

3 2 1 2717.21 0 0 1 
 
3 2 1 A2 0.757 7064.84 1 2 0 

 

1 1 0 7064.83 1 2 0 

 

1 1 0 B2 1.000 

2820.80 0 0 1 

 

3 3 0 2820.69 0 0 1 
 
3 3 0 A1 0.740 7123.23 1 2 0 

 

2 0 2 7123.21 1 2 0 

 

2 0 2 A1 0.906 

2820.82 0 0 1 

 

3 3 1 2820.71 0 0 1 
 
3 3 1 B1 0.958 7126.87 1 2 0 

 

2 1 2 7126.85 1 2 0 

 

2 1 2 B2 0.896 

3038.18 1 0 0 

 

1 0 1 3038.16 1 0 0 
 
1 0 1 B1 0.994 7177.98 1 2 0 

 

2 1 1 7177.97 1 2 0 

 

2 1 1 A2 0.970 

3050.50 1 0 0 

 

1 1 1 3050.48 1 0 0   1 1 1 A2 0.995 
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Table 4. Rovibrational energies, vibrational normal mode (n1n2n3) and rotational asymmetric top (JKaKc) quantum 

labels, rovibrational symmetry (Symm) and largest RRD coefficients (RRD) for selected rovibrational states of 

D2H
+
, obtained with the MARVEL or the D

2
FOPI based RRD algorithms. Energies are given in cm

–1
, with 

respect to the zero point vibrational energy, symmetry labels refer to the irreducible representations of the 

C2v(M)
 
molecular symmetry group.

65
 Problematic states are in bold. 

MARVEL D2FOPI MARVEL D2FOPI 

Energy   (n1n2n3) JKaKc Energy    (n1n2n3)   JKaKc Symm RRD Energy  (n1n2n3) JKaKc Energy (n1n2n3) JKaKc Symm RRD 

34,92 0 0 0 1 0 1 34,92 0 0 0 1 0 1 B1 0,998 2339,73 0 1 0 3 3 1 2339,71 0 1 0 3 3 1 A2 0,781 

49,25 0 0 0 1 1 1 49,26 0 0 0 1 1 1 A2 0,998 2350,97 0 0 1 3 1 2 2350,94 0 0 1 3 1 2 A2 0,903 

57,99 0 0 0 1 1 0 57,99 0 0 0 1 1 0 B2 1,000 2389,50 0 0 1 3 2 2 2389,47 0 1 0 3 3 0 B2 0,685 

101,72 0 0 0 2 0 2 101,72 0 0 0 2 0 2 A1 0,993 2397,50 0 0 1 3 2 1 2397,48 0 0 1 3 2 1 A1 0,788 

110,26 0 0 0 2 1 2 110,26 0 0 0 2 1 2 B2 0,992 2446,18 0 0 1 3 3 1 2446,18 0 0 1 3 3 1 B2 0,985 

136,36 0 0 0 2 1 1 136,37 0 0 0 2 1 1 A2 0,998 2771,51 1 0 0 1 0 1 2771,49 1 0 0 1 0 1 B1 0,998 

179,16 0 0 0 2 2 1 179,17 0 0 0 2 2 1 B1 0,998 2785,33 1 0 0 1 1 1 2785,30 1 0 0 1 1 1 A2 0,998 

182,06 0 0 0 2 2 0 182,07 0 0 0 2 2 0 A1 0,999 2793,95 1 0 0 1 1 0 2793,92 1 0 0 1 1 0 B2 1,000 

196,10 0 0 0 3 0 3 196,09 0 0 0 3 0 3 B1 0,984 2837,55 1 0 0 2 0 2 2837,52 1 0 0 2 0 2 A1 0,993 

200,03 0 0 0 3 1 3 200,02 0 0 0 3 1 3 A2 0,982 2845,72 1 0 0 2 1 2 2845,68 1 0 0 2 1 2 B2 0,992 

251,30 0 0 0 3 1 2 251,31 0 0 0 3 1 2 B2 0,994 2871,25 1 0 0 2 1 1 2871,44 1 0 0 2 1 1 A2 0,998 

283,32 0 0 0 3 2 2 283,32 0 0 0 3 2 2 A1 0,992 2912,10 1 0 0 2 2 1 2912,67 1 0 0 2 2 1 B1 0,997 

296,05 0 0 0 3 2 1 296,05 0 0 0 3 2 1 B1 0,997 2915,60 1 0 0 2 2 0 2915,58 1 0 0 2 2 0 A1 0,999 

377,72 0 0 0 3 3 0 377,76 0 0 0 3 3 0 B2 0,996 2930,82 1 0 0 3 0 3 2930,78 1 0 0 3 0 3 B1 0,983 

1998,54 0 1 0 1 0 1 1998,49 0 1 0 1 0 1 B1 0,985 2934,55 1 0 0 3 1 3 2934,51 1 0 0 3 1 3 A2 0,981 

2014,11 0 1 0 1 1 1 2014,06 0 1 0 1 1 1 A2 0,973 2985,09 1 0 0 3 1 2 2985,06 1 0 0 3 1 2 B2 0,994 

2027,05 0 1 0 1 1 0 2027,01 0 1 0 1 1 0 B2 1,000 3015,81 1 0 0 3 2 2 3015,78 1 0 0 3 2 2 A1 0,991 

2055,10 0 1 0 2 0 2 2055,05 0 1 0 2 0 2 A1 0,947 3028,50 1 0 0 3 2 1 3028,48 1 0 0 3 2 1 B1 0,996 

2062,94 0 1 0 2 1 2 2062,89 0 1 0 2 1 2 B2 0,929 3106,59 1 0 0 3 3 1 3106,57 1 0 0 3 3 1 A2 0,995 

2099,92 0 1 0 2 1 1 2099,88 0 1 0 2 1 1 A2 0,990 3107,23 1 0 0 3 3 0 3107,22 1 0 0 3 3 0 B2 0,995 

2118,59 0 0 1 1 0 1 2118,55 0 0 1 1 0 1 A1 0,968 3871,38 0 2 0 1 1 1 3871,30 0 2 0 1 1 1 A2 0,990 

2128,70 0 0 1 1 1 1 2128,66 0 0 1 1 1 1 B2 0,980 3881,70 0 2 0 1 1 0 3881,63 0 2 0 1 1 0 B2 1,000 

2133,50 0 1 0 3 0 3 2133,45 0 1 0 3 0 3 B1 0,894 3909,91 0 2 0 2 0 2 3909,84 0 2 0 2 0 2 A1 0,974 

2136,24 0 0 1 1 1 0 2136,21 0 0 1 1 1 0 A2 1,000 3921,97 0 2 0 2 1 2 3921,89 0 2 0 2 1 2 B2 0,966 

2136,50 0 1 0 3 1 3 2136,44 0 1 0 3 1 3 A2 0,882 4058,48 0 0 2 1 0 1 4058,42 0 0 2 1 0 1 B1 0,847 

2145,62 0 1 0 2 2 1 2145,58 0 1 0 2 2 1 B1 0,944 4062,89 0 0 2 1 1 1 4062,83 0 0 2 1 1 1 A2 0,757 

2149,56 0 1 0 2 2 0 2149,52 0 1 0 2 2 0 A1 0,938 4097,09 0 0 2 2 0 2 4097,00 0 0 2 2 0 2 A1 0,758 

2194,06 0 0 1 2 0 2 2194,03 0 0 1 2 0 2 B1 0,916 4097,90 0 0 2 2 1 2 4097,84 0 0 2 2 1 2 B2 0,748 

2202,78 0 0 1 2 1 2 2202,74 0 0 1 2 1 2 A2 0,874 4101,08 0 0 2 1 1 0 4101,01 0 0 2 1 1 0 B2 1,000 

2205,80 0 1 0 3 1 2 2205,76 0 1 0 3 1 2 B2 0,969 4119,11 0 1 1 1 1 0 4119,07 0 1 1 1 1 0 A2 1,000 

2225,16 0 0 1 2 1 1 2225,12 0 0 1 2 1 1 B2 0,941 4122,95 0 1 1 1 0 1 4122,90 0 1 1 1 0 1 A1 0,756 

2236,36 0 1 0 3 2 2 2236,32 0 1 0 3 2 2 A1 0,911 4130,79 0 1 1 1 1 1 4130,75 0 1 1 1 1 1 B2 0,849 

2253,05 0 1 0 3 2 1 2253,01 0 1 0 3 2 1 B1 0,905 4179,77 0 1 1 2 1 1 4179,72 0 1 1 2 1 1 B2 0,769 

2254,67 0 0 1 2 2 1 2254,64 0 0 1 2 2 1 A1 0,985 6482,03 1 2 0 1 1 1 6481,96 1 2 0 1 1 1 A2 0,990 

2257,58 0 0 1 2 2 0 2257,56 0 0 1 2 2 0 B1 0,995 6524,93 1 2 0 1 0 1 6465,95 1 2 0 1 0 1 B1 0,990 

2297,58 0 0 1 3 0 3 2297,54 0 0 1 3 0 3 A1 0,836 6570,87 1 2 0 2 1 2 6538,40 1 2 0 2 1 2 B2 0,950 

2306,74 0 0 1 3 1 3 2306,70 0 0 1 3 1 3 B2 0,782 6734,41 1 0 2 2 0 2 6567,70 1 0 2 2 0 2 A1 0,846 
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II.2.6. Concluding remarks 

As a summary to Sec. II.2., we conclude that in order to assign rovibrational quantum 

labels within the framework of the D
2
FOPI program suite in a theoretically rigorous manner, 

the D
2
FOPI package was extended with a code utilizing the RRD protocol. Motivated by this 

work, a detailed numerical investigation was carried out on the embedding dependence of the 

RRD scheme.  

As one would expect, the numerical comparison of RRD overlaps for H2O in the 

different embeddings shows the superiority of the Eckart embedding, i.e., Eckart-based RRD 

overlaps exhibit less mixing than those corresponding to the other two embeddings.  The 

bisector embedding performs slightly better than the R1 embedding, at least for the water 

molecule. 

Irrespective of the embedding employed, the RRD tables yield unambiguous labels for 

the overwhelming majority of the eigenstates in the lower-energy end of the spectrum.  

However, the RRD scheme starts breaking down at higher excitation energies and for higher J 

values.  Numerical results clearly show that the RRD scheme provides considerably more 

unambiguous labels for rotations than the NMD scheme is able to do for vibrations, which 

suggests that the rigid-rotor approximation holds better for rotations than the normal-mode 

approximation for vibrations. 

Based on Fig. 6, several labels in the BT2 linelist
54

 of H2
16

O might be problematic, 

since they disagree with clear assignments obtained from the RRD protocol. 

When comparing RRD assignments with results from the active database approach of 

MARVEL
42

 for the H2D
+
 and D2H

+
 molecules, the RRD algorithm proved to be a useful tool 

for validating experimental energy values and quantum labels, along with identifying some 

problematic cases probably originating from improper previous experimental assignment.  
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II.3. On the DVR of essential singularities 

In many practical applications, e.g., during the computation of the energy levels of 

Coulombic systems,
66 , 67

 energy levels of the spherical oscillator,
5
 quantum dynamics 

studies,
68

 and during the computation of (ro)vibrational spectra of molecules employing 

internal coordinates,
10 ,5 ,69 

singular terms in the Hamiltonian
10,70,71,72

 have to be confronted. A 

common singular term, also present in most of the above-mentioned examples, is the term 2r  

with 0,r   . If one is to compute (ro)vibrational spectra up to or beyond dissociation, one 

might need to deal with wave functions not vanishing at singular geometries, which could 

lead to numerical difficulties arising from the singular operator terms. Partly motivated by 

failures of certain DVR schemes to treat singularities, several useful alternative strategies 

have been advanced for treating singularities in grid-based applications.
 69,70,73,74,75,76 

These 

approaches are not discussed here. It is more relevant for the present section to note that when 

applying the diagonal DVR approximation for the calculation of matrix elements of 
2r

, 

numerical computations show in some cases accurate results with fast convergence.
5,77

 

 

II.3.1. The case of a complete basis set 

Assuming a complete set of basis functions, it is straightforward to demonstrate the 

validity of applying the quadrature approximation (diagonal DVR approximation) for singular 

operators of the form 
nr

 with  1,2,...n  and  ,r a b . What needs to be shown is that the 

matrices of the singular operators are diagonal in the DVR representation, which can be 

thought of as a unitary transformation method,
78 , 79

 i.e., the DVR representation can be 

obtained by the transformation arising from changing the basis to the eigenvectors of the 

coordinate matrix.
 
The diagonal form of the singular operators in the DVR can be proven by 

showing that the matrices of the singular operators are the powers of the inverse of the 

coordinate operator matrix, since a matrix and its inverse, and the powers of its inverse, share 

the same set of eigenvectors.  

For 1n   this can be shown as follows. Let ij i x jQ   and 
1

ij i x jR  where 

i  is the ith basis function, x is the coordinate operator, and f g  is the usual inner product 

between the elements f and g defined in the Hilbert space of the given quantum mechanical 

system. Assuming an orthonormal basis and using the identity relation 
1

ˆ

k

I k k




  
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  1 1

1 1

.ik kj ij ijij
k k

Q R i x k k x j i xx j i j 
 

 

 

      QR I  

Thus, R is the inverse of Q, therefore, they have the same eigenvectors, and R is diagonal in 

the DVR. For 1n   the following can be said. Let 
 n n

ij i x jR . Assuming an 

orthonormal basis, 
   

1 1 2 2 3

1 2 3, , ,..., 1

...
n

n

n n n

ij ik k k k k k j
ij

k k k k

i x j






  R R R R R R  

holds and the matrices of the singular operators with 1n   are the powers of R. Thus, they 

also have the same eigenvectors as the coordinate matrix Q and they are diagonal in the DVR. 

 

II.3.2. The case of incomplete basis sets 

When using an incomplete basis set of N functions, the approach of the previous 

section is not feasible, because 
1

ˆ
N

k

I k k


 . However, following the idea of Dickinson and 

Certain
78

 as reviewed, for example, by Light and Carrington,
6
 one can provide an 

approximation to the error arising from the use of diagonal DVR matrices. 

Let us take the set of  
1

0
( )

N

l l
P x




 functions, defined in the  ,a b  interval of the 

coordinate, which are normed and orthogonal with respect to the real weight function ( )w x . 

Let us also assume for the set of functions to have a corresponding quadrature with quadrature 

points  
1

N

i i



 and real quadrature weights  

1

N

i i
w


, which are exact in representing the 

orthogonality of the above functions, i.e., 

1

( ) ( ) ( ) ( ) ( ) .

b N

k l i k i l i kl

ia

w x P x P x dx w P P   



        (14) 

A straightforward example for  
1

0
( )

N

l l
P x




 is a set of the first N of some classical 

orthogonal polynomials
80

 defined in the interval  ,a b , with  
1

N

i i



 and  

1

N

i i
w


 arising from 

the corresponding Gaussian quadrature rules. In this case the integrals calculated with the 

quadrature are exact for integrands of ( )w x  weight function times a polynomial of order up to

2 1N  . 

A useful and practical way for obtaining a set of quadrature points for a given 

orthonormal basis is to diagonalize the coordinate matrix.  
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To move forward, let our incomplete basis set of N functions be defined as  

 
1

0
( ) ( ) ( )

N

l l
l

x w x P x



 . Then, the exact matrix elements (VBR representation) of the ( )f x   

operator are 

( ) ( ) ( )

b

VBR

kl k l

a

x f x x dx  F  

The approximate matrix elements (FBR representation) calculated within the quadrature 

approximation are 

1

( ) ( ) ( )
( )

N
FBR i
kl k i i l i

i i

w
f

w
    







F  

while the matrix elements in the diagonal DVR approximation are 

( )DVR

kl k klf  F .  

Let us define the matrix  
1/2 N N/ ( ) ( )sl s s l sw w     T  which is unitary if Eq. (14) 

 holds, since 

 
1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) .
( )

bN N N
s

is js i s j s s i s j s j i ij
ij

s s ss a

w
w P P w x P x P x dx

w
      



    

  

       TT T T    

With the help of the T matrix and a little algebra, one can derive the following relation, 

   
1 1 , , 1

, , 1 , 1 1 , 1 1

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( )

N N N
DVR

ij i ij s is js s s ik ks jl ls
is js

s s s k l

N N N N N
s

s ik sk jl sl jl ik s sk sl jl ik k s s l s

s k l k l s k l s s

jl

f f f f

w
f f f

w

      

      


   

  

     

    



    

   



  

    

F TT T T T T T T

T T T T T T T T T T

T T  
, 1

.
N

FBR FBR

ik kl
ij

k l





 F TF T

 

Thus, the FBR is a unitary transform of the diagonal DVR, the eigenvalues are the same in the 

two representations. This means that during the computation of the eigenvalues the error of 

the diagonal approximation using N basis functions is equivalent to the error arising from  

calculating the matrix element integrals with an N-point quadrature. 

 

II.3.3. Test computations 

In nuclear motion Hamiltonians singularities arise when building an internal 

coordinate system on a manifold. Where the Jacobian of the transformation vanishes, certain 

members of the coordinate system won’t exist. If the wave function does not vanish at a 
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singular geometry (where the Jacobian vanishes) than the wave function is in the wrong 

space. However, as shown below, this may not cause unsurmountable difficulties for the 

actual nuclear motion computations.  

As perhaps first discussed in Ref. 10, if the wave function becomes vanishingly small 

nearby a singular geometry, it is possible to deal with singular terms by suitable schemes of 

numerical integration or with a choice of a suitable DVR, whereby points in the vicinity of the 

singularity are avoided during computation of the singular matrix elements. If, however, the 

wave function does not vanish at the singular geometry, the situation becomes somewhat 

more difficult, as is the case for the H3
+
 molecular ion when the vibrations are treated in the 

Jacobi coordinate system and the molecule samples linear configurations. 

Sample computations concerning the singular term 2r  with  0,r   often arising in 

practical applications have been performed in one and three dimensions. Eigenenergies for the 

spherical oscillator model problem (1-D) and for the vibrational energies of the H3
+
 molecule 

(3-D) show that when basis functions with proper boundary conditions i.e., satisfying the 

boundary conditions implied by the given physical system, are used, the diagonal DVR 

approximation is suitable to get converged eigenstates. The 1-D case is treated in detail in 

Ref. 5 so it is not discussed further here. 

Some relevant numerical results for the vibrational energies of the H3
+
 molecular ion 

are presented in Figure 7, obtained using the Hamiltonian given in Eq. (1) and the 

corresponding volume element. The 3-D test computations
5
 of the vibrational energy levels up 

to near dissociation were carried out using the D
2
FOPI code applying Jacobi coordinates and 

a basis set of potential optimized (PO)
12,13,14

 Bessel-DVR basis functions for the stretching-

type coordinates and Legendre polynomials for the angle-type coordinate. This choice of the 

Hamiltonian, volume element, and basis functions, exhibiting the appropriate boundary 

conditions, ensures that (a) the eigenfunction (wave function times the stretching coordinates) 

vanishes at the singularity; and (b) the numerical procedure yields correct eigenvalues. Fig. 7 

shows the absolute error of non-converged even-parity vibrational energy levels, with respect 

to the converged results, obtained either via computing all the matrix elements of the 
2r
 

radial singular terms analytically or via using the diagonal DVR approximation. As can be 

seen in Fig.7, the error of the vibrational eigenenergies are nearly identical in the two cases, 

the diagonal DVR approximation can be used for the evaluation of singular operator matrix 

elements. This general result can be of great help to reduce the cost of computations limited 

by computer power, such as (ro)vibrational calculations on larger molecules. 
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Figure 7. Pictorial representation of the convergence of the even-parity vibrational states of 

the H3
+
 molecule. The computations were performed with (Diag-DVR) or without (Exact-

DVR) using the diagonal DVR approximation for the 
2r

 singular terms in the Jacobi 

coordinate system and employed 105 and 100 PO Bessel-DVR functions for the two distance-

type and 35 Legendre basis functions for the angle-type coordinates.  Absolute deviations 

from the fully converged eigenenergies obtained with 120, 120, and 51 basis functions 

applying the Exact-DVR technique are shown. 

 

As detailed above, the error in the eigenvalues obtained with the diagonal DVR 

approximation are almost identical with the error of eigenvalues obtained in the FBR using 

Gaussian quadrature for evaluating matrix elements. Table 5 presents the case of spherical-

oscillator basis functions
5
 which have the same boundary conditions as the PO Bessel-DVR 

functions, i.e., boundary conditions such that the integrands in the integrals defining the 

matrix elements of the 
2r

 singular operator are not singular. However, when one uses 

Gaussian quadrature for computing the integrals it is necessary to defactor the weight function 

of the Gaussian quadrature, which in turn causes the integrand to become singular. As 

expected, the matrix elements of the 
2r

 singular operator obtained in the FBR through 

Gaussian quadrature have large relative errors with respect to the VBR. Nevertheless, the 

eigenvalues show much less deviation from the VBR eigenvalues. This observation is related 
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to the applicability of the diagonal DVR approximation for evaluating matrix elements of the 

2r  singular term.  

Due to the wide range of applications, and possibly also to provide insight into other 

possible approximations which are not considered otherwise, it would be of great general 

interest to have a rigorous mathematical explanation for the applicability of the diagonal DVR 

approximation for evaluating matrix elements of the 2r  singular term. This is clearly an 

important field for future research. 

 

 

 

Table 5. Average relative errors, in %, of the eigenvalues and matrix elements of the singular 

operator 
2r
 with  0,r   in an FBR, obtained with Gaussian approximation, taken with 

respect to the appropriate VBR values. 

Eigevalues Matrix elements 

0.6 
 

26 39 50 59 67 74 80 86 92 97 

0.7 
 

39 41 50 59 67 74 80 86 92 97 

0.9 
 

50 50 52 59 67 74 80 86 92 97 

1.1 
 

59 59 59 60 67 74 80 86 92 97 

1.4 
 

67 67 67 67 68 74 80 86 92 97 

1.8 
 

74 74 74 74 74 75 80 86 92 97 

2.4 
 

80 80 80 80 80 80 81 86 92 97 

3.5 
 

86 86 86 86 86 86 86 87 92 97 

6.1 
 

92 92 92 92 92 92 92 92 93 97 

25.1 
 

97 97 97 97 97 97 97 97 97 98 

Matrix elements of the singular operator were computed using 100 basis functions based on spherical oscillator 

functions. The values presented in the table were obtained through averaging every 10 eigenvalues and the 

“corresponding” 10 X 10 matrix elements. 
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III. Energy levels beyond dissociation 

III.1. What are resonance states? 

Resonance states, also known as quasi-bound states, of a system are metastable states 

which have sufficient energy to brake up the system into its subsystems. They decay 

exponentially with time. Though seldom considered, they play an important role in atomic 

and molecular physics,
81,82,83,84

 for example, in unimolecular reactions, in photodissociation 

and photoassociation studies, and in scattering phenomena.  

Although a well-founded, rigorous mathematical theory of resonance states is 

available,
85 , 86

 it requires an in-depth knowledge of functional analysis which is usually 

beyond the scope of everyday theoretical chemists. For a variety of practical applications, 

however, it seems that an intuitive approach to resonance phenomena is sufficient. For 

example, following the approach of Refs. 87  and 88 , in the Schrödinger representation 

resonance states can be associated with outgoing eigenfunctions of the Hamiltonian, diverging 

exponentially at infinity. Due to the outgoing boundary condition, the eigenvalues 

corresponding to resonance states are complex. They are usually written as res

2
n n n

i
E     , 

where n   is the resonance position and n  is the width (inverse lifetime) of the resonance 

state. Let us review how one “derives” resonance states in a compact and intuitive theoretical 

manner. For simplicity the resonances of a single particle in a time-independent central 

potential will be discussed, generalizations will be given later. Detailed discussion of some of 

the steps will be omitted, as it is mainly elementary textbook material.
87

 

Having a Ĥ  time-independent Hamiltonian, we are looking for the stationary 

solutions of the time-dependent Schrödinger-equation 

( , ) ˆ ( , )
t

i H t
t


 



r
r       (15) 

 i.e., the wavefunction is sought in a product form 

( , ) ( ) ( )t T t r r        (16) 

which leads to the well-known equations 

( )
i

Et

T t e


         (17) 

and 

ˆ ( ) ( ).H E r r        (18) 
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Writing out the Hamiltonian explicitly and rearranging Eq. (18), we arrive at  

2

( ) ( ) 0
2

V r E
m


 
     
 

r      (19) 

where m is the mass of the particle, Δ is the Laplacian, and ħ is the reduced Planck constant. 

With further arrangement and by introducing the variables 2

2

2m
k E  and 

2

2
( ) ( )

m
U r V r , 

Eq. (19) can be written as 

 2( ) ( ) ( ) 0k U r    r r      (20) 

At this point, changing to spherical coordinates and with the further use of the separation of 

variables via ( ) ( ) ( , )R r Y  r , where r is the distance from the origin while ϑ and φ are the 

usual spherical angles, one arrives at a series of one-dimensional radial equations 

 
2

2

2 2

( ) ( 1)
( ) ( ) 0 , 0,1,2,...l

l

r l l
k U r r l

r r




  
     

  
  (21) 

along with 
1

( ) ( ) ( , )m

l lr Y
r

   r  such that ( ) ( ) /l lr R r r  and ( , )m

lY    are the usual 

spherical harmonics. 

The asymptotic form of Eq. (21) is  

 
2 ( )

2 ( )

2

( )
( ) 0 , 0,1,2,...

a
al

l

r
k r l

r





  


    (22) 

for which the general solution is  

( ) ( ) ( ) ( ) ,a ikr ikr

l l lr A k e B k e        (23) 

which incorporates three vastly different situations according to the boundary conditions one 

demands for the solutions of Eq. (21). These are as follows. 

a) For bound states, one demands that the wavefunctions are in the Hilbert-space (which 

means  2L  for Eq. (21)), thus   must be 
2L  normalizable. In the Hilbert-space 

domain the Hamiltonian is hermitian, its eigenvalues are real. The required boundary 

conditions can be met by E < 0 which means k is pure imaginary and can be written as 

 , \ 0k i   , which results that from the asymptotic form in Eq. (23) only the factor of 

the first term (only 0   case is considered, 0   is essentially the same) can be non-zero in 

order for the wavefunction to be square integrable, thus we get 

( ) ( ) ( )a r

l lr A k e   .       (24) 
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This is the well-known exponentially decaying asymptotic behavior for bound states. 

b) Although, strictly speaking, scattering states are not in the Hilbert space,
85

 with Dirac’s 

bra-ket formalism formally they can be treated as such, and since they are not square 

integrable (not 2L  normalizable) in practice they are “Dirac-delta normalized”. So for 

scattering states one requires the wavefunction to be finite at infinity and Dirac-delta 

normalizable, which can be achieved with positive real energy eigenvalues, i.e., for E > 0 k is 

real, and the two terms in Eq. (23) correspond to the outgoing and incoming sphere waves (or 

plane waves for a one-dimensional problem), respectively. 

 c) For resonance states, one searches for boundary conditions and corresponding energy 

eigenvalues that describe a system that falls into its subsystems, i.e., has outgoing boundary 

conditions with no incoming wave term in Eq. (23) ( ( ) 0lB k   for resonance states), and the 

decay follows an exponential rule in time. Looking at Eq. (17), it is clear that the exponential 

decay in time, which is a characteristic attribute of resonance states, can only be achieved 

with complex energy eigenvalues, which can be written as res

2

i
E     , where   is 

associated with the resonance position and (as will be seen later)   is the width (inverse 

lifetime) of the resonance state. It is noted that although for a Hamiltonian to have complex 

eigenvalues might be surprising at first, it is quite natural if one considers that wavefunctions 

which have outgoing boundary conditions are not in the Hilbert-space, i.e., they are not in the 

self-adjoint domain of the Hamiltonian. The asymptotic form of the resonance radial function 

of Eq. (23) is 

( ) ( ) ( ) ( )a ikr iar br

l l lr A k e A k e e   ,     (25)  

where  

    

 

 

1/2
1/4

22

2

2
/ 2 cos ,

tan ,

1
arctan / 2 .

2

m
a

b a

 



 

 
   
 



 

 

Using these expressions the asymptotic form of the complete wavefunction of the system is 

written as 
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( ) ( ) ( )

2 2

( )
2

1
( , ) ( ) ( ) ( ) ( , )

( ) ( )
( , ) ( , )

( )
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l l

i ar t t
m brl

l
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r
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Y e e e Y e e e e

r r

A k
Y e e e

r

 



   

   

 



      
 


 

   

  



r r

   (26) 

From Eq. (26) one can see how   is related to the inverse lifetime of the system and that in 

order to have exponential decay in time, 0   must hold, which, along with 0   (the 

system is assumed to have energy higher than the dissociation energy which is zero in our 

example), leads to 0b  , which means that the wavefunction diverges exponentially as 

.r   

 A physical interpretation of the divergence property of the wavefunction can be that at 

r  one observes the particles which were formed an infinitely long time ago.
87

 

Generalization of the results obtained for the simple model system detailed above to 

larger quantum systems can be achieved quite straightforwardly by interpreting r as a 

dissociation coordinate, or in other words interpreting r as the “reaction” coordinate 

corresponding to the dissociation of the system. 

In summary, the resonance states of a quantum system are associated with stationary 

states which have wave functions diverging exponentially with respect to the dissociation 

coordinate(s) r, and have energy eigenvalues of the form 
res ,

2

i
E     with 0  and 

r

dE   , where 
r

dE  is the dissociation threshold corresponding to the dissociation channel 

described by the r “reaction” coordinate. 

 Due to their diverging asymptotic behavior, resonance wave functions are not square 

integrable; thus, one would think at first that the 
2L  methods discussed in the earlier sections 

of this thesis are not suitable for describing them. There are, however, several methods 

available which do make possible the determination of resonance eigenstates using 
2L  

methods, usually based on employing modified non-Hermitian Hamiltonians whose 

eigenvalues with corresponding 
2L  eigenfunctions can be used for evaluating or 

approximating resonance positions and widths. The two most popular methods are the 

complex coordinate (CC) method
88, 89 , 90

 and the complex absorbing potential (CAP) 

method.
91,92,93 

 The latter seems to be favored for calculating (ro)vibrational resonances of 



 

42 

 

polyatomic molecules.
94,95,96,97,98

 Recent works
94,97,98

 exploited efficient numerical techniques 

corresponding to well-developed 2L methods for computing resonance eigenvalues.  

Experimentally observed, near-threshold resonance structures of the spectra of 

molecules have mostly defied detailed first-principles analysis.
99,100

 Nevertheless, it is clear 

that there are at least two well-defined mechanisms that lead to the formation of long-lived 

resonances. Rotational excitation of below-threshold vibrational states leads to a centrifugal 

barrier, behind which high-energy rovibrational states can be trapped temporarily, giving rise 

to so-called shape resonances. The width of shape resonances is determined by the centrifugal 

barrier. Shape resonances can extend to hundreds of wavenumbers above the dissociation 

threshold and they result in narrow features in the spectrum due to their tunneling character. 

These resonances are responsible, for example, for part of the famous Carrington bands, the 

multitude of still unassigned lines observed in the near-dissociation spectrum of H3
+
.
99

 

Vibrational excitation into high-energy states which do not lead toward dissociation gives 

Feshbach (sometimes called Feshbach-Fano) resonances. Both types of resonances have been 

identified in the near-threshold spectrum of the water vapor.
3,101

 A combination of these two 

mechanisms has also been observed.
96

 It is expected that as the method developments 

continue resonance-state computations will become widespread for 3-5-atomic systems, 

extending our knowledge
95,102,103,104,105,106,101

 about them. 

 

III.2. Computing resonance states in quantum chemistry 

III.2.1. Complex Absorbing Potential (CAP) method 

In the CAP method, the Hermitian Hamiltonian is perturbed with a complex absorbing 

potential, which damps the outgoing wave functions at the asymptotic region of the PES, 

making them square integrable and suitable for an 
2L basis expansion.  

Considering only imaginary CAPs, the perturbed Hamiltonian might be written as   

ˆ ˆ( ) ( )H H i W r          (27) 

where ( )W r  is a real valued function of the dissociation coordinate(s) r giving the functional 

form of the CAP, while the strength of the absorbing potential can be set with the real 

parameter η. 
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 The perturbation of the Hamiltonian with a CAP naturally changes the eigenvalues 

along with damping the eigenfunctions. The change of the resonance eigenvalues caused by 

the CAP can be written
92

 as a power series of η, i.e., for a given resE  resonance eigevalue 

res 2

1 2( ) ...E E a a            (28) 

where ( )E   is the corresponding eigenvalue of the perturbed Hamiltonian. Eq. (28) would be 

the case if one calculated eigenvalues exactly. In practical applications, however, one uses a 

finite basis set, which introduces an error; therefore, the fb ( )E   computed eigenvalues of the 

perturbed Hamiltonian may be written as 

fb res 2

1 2( ) ... ( ),E E a a g            (29) 

where fb ( )E   is the eigenvalue of the perturbed Hamiltonian computed in a finite basis and 

( )g   is the basis set error. Thus, when one computes the eigenvalues of the Hamiltonian 

perturbed by a CAP, one faces two error terms with respect to the exact resonance eigenvalue. 

The first error term is the power series in η which naturally increases, as one increases the 

CAP strength parameter η. The second error term g(η), on the other hand, decreases as η is 

increased, since a stronger CAP damps the resonance wavefunctions more strongly, making 

them easier to expand in an 
2L  basis, which leads to smaller g(η) basis set error. Therefore, 

within a single resonance state, as one changes the CAP strength parameter η from a “very 

small” value to a “very large” value, and while doing so plots the computed 
fb ( )E   

eigenvalue, one obtains a trajectory on the complex plane. Around one end of the trajectory, 

where η is “large”, the power series error is dominant, while around the other end, where η is 

“small”, the basis set error is dominant. Somewhere in between the two cases is the point on 

the trajectory where the two errors are equal, and which is the best approximation for the 

exact resonance eigenvalue.
92

 Since the power series error and the basis set error (which are 

complex valued functions of the η parameter) approach the point of best approximation with 

different phases,
92

 one can observe a cusp in the eigenvalue trajectory around the point of best 

approximation. 

Thus, along with other alternatives not detailed here,
92,94,97

 resonance eigenvalues in 

the CAP method can be evaluated
92,94,98

 by finding cusps in eigenvalue trajectories obtained 

by diagonalizing the complex symmetric Hamiltonian matrix with different CAP parameters.  
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III.2.2. D
2
FOPI and the CAP method 

 Motivated by the success and popularity of the CAP method in the literature, a 

program was developed for computing resonance energies within the CAP method based on 

D2FOPI computations. Following the work of Ref. 98, the algorithm can be described as 

follows: 

1) Bound states up to dissociation and many eigenvectors with energies above the dissociation 

energy are computed using the D
2
FOPI program, i.e.,  

 ˆ , 1,2,...,k k kH E k N          (30) 

is solved, where Ĥ  is the triatomic (ro)vibrational Hamiltonian and N is larger than the 

number of bound states. 

2) Using a subset of the  , 1,2,..., ,k k N   computed eigenvectors as a basis, the matrix 

representation of the CAP-modified Hamiltonian, 

ˆ ˆ( ) ( ),H H i W r     

is constructed via 

ˆ
kl k kl k lE i W    H         (31) 

and its eigenpairs are computed for a great many values of the CAP parameter η. In other 

words, at each step, while varying the CAP strength, the perturbed Hamiltonian matrix is 

constructed and diagonalized, and the resulting eigenpairs are stored. 

3) As a function of the CAP strength parameter, the eigenvalues of the CAP-perturbed 

Hamiltonian are plotted, resulting in a set of N eigenvalue trajectories on the complex plane, 

which are then analyzed by an automatic procedure, which detects cusps in the trajectories. If 

a cusp is present near the same position for a majority of different CAP functions used, i.e., 

the cusp position is independent of the functional form of the CAP, it is associated with a 

resonance eigenvalue. 

Construction of the eigenvalue trajectories (after each CAP strength parameter 

changing step, pairing up the eigenvalues with the eigenvalues of the previous step) is done 

by computing eigenvector overlaps at each CAP strength changing step, i.e., at each step each 

eigenvalue is associated with the eigenvalue of the previous step with which their 

eigenvectors give the largest overlap. It is noted that although this is not necessarily a clear 

procedure in the sense that the eigenvectors are not continuous functions of the matrix 

elements, in practice no discontinuous behavior was observed in the eigenvalue trajectories 

around the region of interest, only occasionally at “very small” η values. 
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 The automated cusp detection is achieved by computing the curvature and point 

density along the trajectories and locating their local maxima. If somewhere along a trajectory 

(within some energy error threshold) both the curvature and the point density has a local 

maximum, that point is labeled as a cusp and stored. The well-known formula
107

 for 

evaluating the curvature  of a parameterized two dimensional curve reads in this case as 

fb 2 fb fb 2 fb

2 2

3/2
2 2

fb fb

Re ( ) Im ( ) Im ( ) Re ( )

( )

Re ( ) Im ( )

d E d E d E d E

d d d d

d E d E

d d

   

   
 

 

 

              


              
         

,     (32) 

where differentiations with respect to the CAP strength parameter are carried out numerically 

by using simple finite differences. The point density is considered to be inversely proportional 

to the norm of the eigenvalue derivative with respect to the CAP strength parameter, which 

can be written as 

1/2
2 2

fb fbRe ( ) Im ( )
DN( )

d E d E

d d

 


 

               
         

       (33) 

where differentiations are also computed using simple finite differences. 

 

III.2.3. Complex coordinate scaling 

III.2.3.1. What is complex scaling? 

The complex scaling method, also known as the complex rotation or complex 

coordinate method, has been a tool of computational chemistry and molecular physics for 

several decades. Excellent application-oriented reviews
88,89,90 

can be found in the literature 

along with discourses on the rigorous mathematical foundations.
108,109,110,111

 Over the years 

several variants of the “conventional” complex scaling method were proposed, such as the 

exterior complex scaling or the smooth exterior complex scaling, for example, from which 

one may obtain the CAP method by using certain approximations.
88

 Let us review the basic 

idea behind using complex coordinates.  

When the goal is to compute resonance positions, one is looking for solutions of the 

time-independent Schrödinger equation having wavefunctions with exponentially diverging 

asymptotic behavior.   



 

46 

 

res res res res 2ˆ ,H E L           (34) 

Let us introduce an invertible operator Ŝ  for obtaining a similarity transformation of the 

Schrödinger equation, i.e., 

1 res res resˆ ˆ ˆ ˆˆSHS S E S          (35) 

Also let us choose the Ŝ  operator so that the functions resŜ    are square integrable, i.e., 

   
1 res 2ˆ ˆˆ , .SHS E L           (36)

  

Thus, we obtained an eigenvalue equation for the transformed Hamiltonian 
1ˆ ˆˆSHS  , where the 

eigenvalues are the exact resonance eigenvalues, and the corresponding eigenfunctions are 

square integrable, thus can be computed with the well developed 2L  techniques. 

 As shown in the next section, for the exponentially diverging resonance wave 

functions a suitable definition for the transformation operator can be 

ˆ ( ) ( )iS f r f re 

         (37) 

where   is a free parameter. In words, the operator Ŝ  rotates the argument of a function by 

  in the complex plane. Ŝ  can be utilized for analytical functions for example by  

ˆ
i r

rS e






  

since 

1

1 12 2

2

ˆ ˆ ˆ ˆ( ) ( ) lim ( ) lim ( )

ˆ ˆlim lim 1

N N
i r

r

N N

N N

N N

i r i r i r
S f r e f r I f r I I f r

N r N r N r

i r i r r i r i
I f r I f r

N r N N N r N





  

    
 





 

 

 
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           

       

            
                 

           

 

2 2

2

2 2

2
lim 1 lim 1 .

N N

i

N N

r

N

i r i
f r N f r f re

N N N





  


 

  
  

  

        
                         

  

III.2.3.2. Effect of complex scaling on the asymptotic behavior of wave functions 

Let’s see the asymptotic behavior of the exponentially diverging radial function of Eq. (25) if 

acted upon by the operator Ŝ  (which is the same as the asymptotic behavior of a general 

resonance wave function complex scaled in the reaction coordinate(s) in which the resonance 

wave function diverges exponentially): 

( )ˆ ˆ( )
i ia iar br iare bre i r r

lS r S e e e e e e
   

         (38) 

where 
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      
      

    
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1/2
1/4
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cos tan sin

sin tan cos
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/ 2 cos

1
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a

a
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a
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 

 

 

 

 
   
 

 

        

From Eq. (38) one can see that in order for the complex scaled radial function to be square 

integrable (or more generally, for scaled resonance wavefunctions to be square integrable)  

tan tan   must hold. Considering that 0  , upon scaling Ŝ  only those resonance states 

will become square integrable for which    res1 1
arctan / 2

2 2
Arg E      . 

 For bound states, it can be easily seen from Eq. (24) and also is known from the 

literature
88,89,108,109,110

 that upon complex scaling, for Θ values of physical interest, i.e., 

/ 4  , the bound states remain square integrable.   

As for scattering states, they become divergent upon complex scaling for real k values 

in Eq. (23), but within the framework of the Balsev–Combes theorem
109

 the scaled scattering 

wave functions contain also combinations of incoming and outgoing waves with bounded, 

non-square integrable (scattering) asymptotic behavior which are associated with a continuum 

that is rotated into the lower-half of the complex energy plane by the angle 2 .
88,89

  

Based on the asymptotic behavior of the wave functions of the complex scaled 

Hamiltonian discussed above, one can imagine a qualitative picture of the spectrum of the 

scaled Hamiltonian (within the Hilbert-space and the space of bounded, Dirac-normalizable 

functions), having real discrete eigenvalues for bound states, a scattering continuum rotated 

into the lower half of the complex plane by 2  (for each dissociation channel) and discrete 

complex eigenvalues in the area between the real axis and the rotated scattering continua 

corresponding to resonance states. As a demonstration, the two panels of Fig. 8 show a) 

sketch of a spectrum of a complex-scaled Hamiltonian of a system with a single dissociation 

channel, and b) sketch of a spectrum of a complex-scaled Hamiltonian of a system having 

multiple dissociation channels computed using an L
2
 method.  
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Figure 8. a) the spectrum of a complex scaled Hamiltonian of a system with a single 

dissociation channel and b) the spectrum of a scaled Hamiltonian of a system having multiple 

dissociation channels computed using L
2
 methods 

 

To conclude, for a resonance state satisfying Eq. (34) with wave functions having 

exponential asymptotic divergence with respect to the dissociation coordinate(s) and complex 

eigenvalue E
res

, one may construct a complex-scaled Hamiltonian upon similarity 

transformation with the operator of Eq. (37), which naturally has the same 
resE  eigenvalue 

with corresponding square integrable wave functions as long as  res1

2
Arg E   holds for the 

scaling parameter.  

III.2.3.3. The complex scaled Hamiltonian 

So far we have considered the effect of complex scaling on the boundary properties of 

different wave functions and thus qualitatively its effect on the spectrum. For applications, 

however, we need the actual form of the complex scaled Hamiltonian which is fortunately 

rather simple to obtain for the scaling operator of Eq. (37). The non-relativistic Hamiltonians 

of quantum mechanics are usually built from differential operators and functions of the 

coordinate operator(s), thus we only need to consider the complex scaling of this two types of 

operators.  

Let r be the coordinate being scaled by the ˆ ( ) ( )iS f r f re 

   operator. The scaled 

form of the differential operator 
r




  then acts on an analytical function ( )f r  as 

1 ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ( ) ( )
( )

i i
i i i i

i

f re f re f r
S S f r S f re S e S e e

r r re r r

 
   

    

 
    



    
   

    
  (39) 

where we took advantage of the fact that ( )f r  is analytic, thus its derivative with respect to r 

and ire   are the same. As seen from Eq. (39), the differential operator 
r




simply receives a 
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constant multiplier upon complex scaling. Derived in the same manner, it is easy to see that 

the differential operator 
2

2r




 takes the form  

2 2
1 2

2 2

( )ˆ ˆ ( ) if r
S S f r e

r r



 

  


 
      (40)

 

upon complex scaling. As for the functions of the coordinate operator of the form ˆ( )V r , 

which are multiplicative operators, 

1ˆ ˆ ˆ ˆˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),i i iS V r S f r S V r f re S V r f re V re f r  

   

       (41) 

thus upon complex scaling formally they remain the same multiplicative operators, but 

multiply by functional values obtained at the scaled coordinate values. 

 To illustrate what was said above, for a simple one-dimensional Hamiltonian of the 

form  

  
2

2

2

1 15ˆ ( ), ( )
2 2

rd
H V r V r r e

dr

         (42) 

complex scaling gives 

2 2 2
1 1 2 2

2 2

1 15ˆ ˆ ˆ ˆˆ ( )
2 2 2

i
i

i red e d
S HS S V r S r e e

dr dr






   


   
      

 
  (43) 

III.2.3.4. Detecting resonance eigenstates in the complex coordinate formalism 

 In practical applications the question arises how one should identify resonance 

eigenvalues when using complex scaling. Naturally, resonance eigenvalues with physical 

meaning should be independent of the scaling parameter  . However, in practice, when one 

uses finite basis sets, this is not necessarily true. By changing the scaling parameter, one 

changes the form of the wave functions, thus also changes the “goodness” of the basis. 

Therefore, the basis set error and hence the computed eigenvalues depend on the scaling 

parameter. It is known
89

 and one can also see it in the examples of the applications section 

that for the bound states and resonance states (which already have square integrable wave 

functions at the given   value), increasing   makes it more difficult to expand the wave 

function in terms of an L
2
 basis set due to the oscillatory term in Eq. (38). Two possible ways 

to identify resonance eigenvalues in calculations utilizing complex scaling are outlined below: 

1) Looking at Fig. 8, the most natural way to identify resonance eigenvalues seems to 

be by plotting the computed spectrum and associating resonance states visually with the 

eigenvalues between the real axis and the rotated scattering continua. This might be a feasible 
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route if one has excellent basis set convergence, the computed points in the rotated continua 

form indeed a straight line and are clearly separable from the resonance eigenvalues. This is 

the case in the one-dimensional model systems discussed in the applications section. 

However, if basis set convergence (which also changes with  ) is barely met, then the 

computed points in the rotated continua form a straight line only approximately, or the spectra 

is dense and the resonance eigenvalues are not clearly separated from the points of the rotated 

continua, visual resonance identification from a single spectrum does not seem to be the 

proper choice as will also be seen in the section on triatomic vibrational resonances. 

2) It is well known
112

 that resonance eigenvalues can be identified in the complex 

scaling formalism by locating stationary points in eigenvalue trajectories obtained by varying 

the scaling parameter  . In practice this can be achieved by computing the spectra of the 

scaled Hamiltonian for a large number of   values and examining the eigenvalue trajectories 

numerically or visually. 

 

III.2.4. D
2
FOPI and the complex coordinate method 

As seen in Eq. (41), in the complex coordinate framework one needs to evaluate the 

coordinate operators at complex values. For computing electronic resonances, where the 

potential energy function is given in terms of simple Coulombic potentials, complex scaling is 

trivial. The case is more difficult for computing polyatomic nuclear motion resonances, where 

scaling of the molecular potential energy surfaces (PES) is not necessarily an easy task. If an 

analytic fit of the PES is available, then complex scaling can be done by using the analytic 

form of the PES in complex arithmetic which usually requires the rewriting of the PES 

subroutine. There are alternatives, however, which can be used even if there is no analytic 

form of the PES available, i.e., the PES is only known on a grid. When computing the matrix 

representation of the complex scaled potential one might scale the basis functions instead of 

the PES,
113

 or one might evaluate the PES at complex coordinate values from the linear 

combination of PES values at real coordinate values.
114

 

Although there exists at least three examples in the literature
113,115,116

 which apply the 

complex scaling method for computation of nuclear motion resonances of polyatomic 

molecules, at present such calculations are mainly carried out using the CAP 

method.
94,95,96,97,98

 Therefore, the motivation is quite natural to apply complex scaling for 

nuclear motion resonance computations within the framework of D
2
FOPI. In order to achieve 

a simple methodology, in which the D
2
FOPI protocol can be straightforwardly exploited, only 
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the “conventional” complex scaling is considered in the present thesis. The use of alternative 

complex scaling methods such as exterior complex scaling could be a beneficial improvement 

but are left to the future. Based on its rigorous mathematical foundation, results obtained with 

complex scaling could prove to be a useful tool in verifying CAP results, where experiment is 

not available. 

The answer to which coordinates need to be complex scaled in the Hamiltonian used 

in the D
2
FOPI protocol naturally depends on the physical system under consideration. For a 

system with one dissociation channel, using Jacobi-coordinates is the natural choice with the 

R2 Jacobi-coordinate being the dissociation coordinate. In this case only the R2 coordinate 

should be scaled; thus, for example, considering vibrational resonances the scaled 

Hamiltonian of Eq. (1) would be (noting that   is the scaling parameter and Θ  is the bending 

type coordinate) 

 
2 2 2 2 2

1 22 2 2 2 2

1 1 2 2 1 1 2 2

1 1ˆ ˆcot , ,
2 2 2 2

i i
ie e

H Θ V R R e Θ
R R R R Θ Θ

 



   

      
        

     
 

For a system with two or three dissociation channels, both R1 and R2 need to be scaled. The 

evaluation of the potential energy function at complex values can be done quite 

straightforwardly by rewriting the PES subroutine used by the D
2
FOPI into complex 

arithmetic.  

Obtaining the matrix representation of the scaled Hamiltonian can be done directly, 

i.e., the matrix representation of the scaled triatomic Hamiltonian is constructed using a 

direct-product basis, as prescribed by the D
2
FOPI protocol. Although due to the efficiency of 

the D
2
FOPI method this seems to be a useful route, there are at least two factors which hinder 

this approach. The first is that the matrix representation of the scaled Hamiltonian leads to a 

complex symmetric matrix which means that for the computation of the required eigenpairs 

one must use an iterative eigensolver for complex symmetric matrices, which is in general 

slower than an iterative eigensolver for real symmetric matrices. The second problem is that 

since the bound states are square integrable eigenstates of the scaled Hamiltonian, before one 

can compute the resonance states using an iterative eigensolver, one needs to determine all the 

bound states of the system. This is highly inefficient as usually iterative eigensolvers tend to 

slow down dramatically as the required number of eigenpairs to be computed increases. To 

overcome the second problem, one might try using spectral shift techniques. However, they 

are hindered in nuclear motion computations by the large matrices with large spectral ranges 

and dense spectra near dissociation. Based on a series of unsuccessful attempts trying several 
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iterative eigensolver methods, the use of spectral shift techniques didn’t seem to be feasible 

for the present study. 

 Another way of obtaining the Hamiltonian matrix when combining complex scaling 

with D
2
FOPI could be similar to the method applied when merging D

2
FOPI with using a 

CAP. First, by using D
2
FOPI one computes all the bound states of the unscaled Hamiltonian 

along with many eigenpairs having “energies above the dissociation limit”, i.e.: 

 ˆ , 1,2,...,k k kH E k N         (44) 

is solved, with N larger than the number of bound states. Then using a subset of the computed 

eigenvectors as an orthonormal basis set, one constructs the matrix of the scaled Hamiltonian, 

1ˆ ˆˆ ,kl k lS HS

 

  H       (45) 

resulting in a very compact matrix representation. Finally, resonance eigenvalues can be 

obtained via simple direct diagonalization of the matrix in Eq. (45). 

 Choosing the second approach for obtaining the matrix representation of the complex 

scaled Hamiltonian, the D
2
FOPI program package was extended with a code which uses the 

D
2
FOPI eigenpairs as input to construct the matrix representation of the triatomic 

(ro)vibrational Hamiltonian scaled in the R1 and/or R2 stretching type coordinates (as set by 

the user) and computes its eigenvalues via direct diagonalization. 

 

III.3. Applications 

III.3.1. One-dimensional tests 

 In order to see some textbook-type examples on resonance computations and to have 

some understanding and comparison on the numerical properties of the CAP and complex 

scaling methods, one-dimensional tests were carried out. The two model systems considered 

are described by the Hamiltonians 

 
2

2

1 1 12

1 15ˆ ( ), ( ) , 0, ,
2 2

rd
H V r V r r e r

dr

         (46) 

where 1( )V r  is the well known potential of Bain et al.,
117

 supporting no bound states but a 

variety of resonance states, and 

    
2 2

2 2

2 2 22 2

1 200ˆ ( ), ( ) 75 1 75 , 0, ,
2

rd
H V r V r e r

dr r

 
          (47) 
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which can be thought of as the Hamiltonian of a Morse-oscillator having a centrifugal barrier 

term supporting shape resonances. Pictorial representations of the 1( )V r  and 2 ( )V r  potentials 

are given in Fig. 9. 

 

Figure 9. Pictorial representation of the one-dimensional potentials a) 2
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When using the CAP method to compute resonances, a simple quadratic absorbing 

potential of the form 

 
2

0 , if
( )

, if

s

s s

r r
W r

i r r r r


 
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was chosen where   is the CAP strength and rs is the value where the CAP “turns on”. 

Different CAP functions were constructed by setting rs to 4, 5, 6, or 7. For constructing the 

eigenvalue trajectories, while   was changed between min 0.01   and max 1.00,   or 

between  min 0.01   and max 1.50 
 
in 200N   steps. Following the literature,

92
   was set 

in the kth step as 
 

 
 max min

min

ln 1
1 1

1
k exp k

N

 
 

  
     

  

 . It is noted that setting the   

values as 
 

 
 max min

min

exp 1
ln 1 1

1
k k

N

 
 

  
     

  

 and as  max min
min 1

1
k k

N

 
 


  


 

were also tested, but showed to be less effective for finding resonance cusps. Cusp detection 

followed the protocol described in the end of section III.2.2. setting the energy threshold to 

0.01. Cusps were marked as potential resonance eigenvalues if for at least 25% of the 
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different CAP functions provided a cusp in the same position, i.e., within the distance of the 

0.01 energy threshold. 

In the case of computing resonances in the framework of the complex scaling method, 

the scaled 1-D Hamiltonians have the form 

   
2 2

1

2
ˆ ˆˆ ( ), 1,2 , 0,

2

i
i

k k

e d
S H S V re k r

dr




 


        

The scaling parameter   was set to 0.3 for 1k   and was changed between 0.1 and 0.2 for

2k   in order to see how basis set convergence is affected by changing the value of  . 

Resonance positions were identified by visually interpreting the spectra. 

The matrix representation of the 1-D CAP modified Hamiltonians and complex scaled 

1-D Hamiltonians were obtained using spherical-oscillator DVR basis functions (for details 

see Sec. IV.1 in Ref. 5) with parameters 0   and max 15R   which means that all the DVR 

quadrature points are between 0r   and 15r  . Integrals of the differential operator matrix 

elements were calculated analytically
5
 and transformed to the DVR via the transformation 

method,
6
 while the potential and CAP matrices are diagonal in the DVR with the diagonal 

elements being the functional values of the PES and the CAP, respectively, at the DVR grid 

points. 

The summary of the computed results on the 1-D Hamiltonians of Eq. (46) and Eq. 

(47) using the complex coordinate method are given in Tables 6 and 7, respectively. Pictorial 

representation of the results is given in Figures 10 and 11. In Table 7 one can see that by 

increasing the value of the scaling parameter, basis set convergence tends to slow down. 

However, if basis set convergence is fully met, bound state and resonance eigenvalues are 

independent from the value of the scaling parameter. Convergence of the imaginary part of 

the eigenvalues seems to be slower than that of the real part. An interesting feature observed 

is that when θ = 0.10, the fourth eigenvalue (second resonance state) seems to converge to a 

false value, compared to the consistent results of the θ = 0.15 and θ = 0.20 cases. Looking at 

Figure 11, one can see that the θ = 0.10 choice is “barely” enough for the second resonance 

state to “become visible”, which gives rise to perturbations in the close-lying rotated 

continuum. Most probably this perturbation is responsible also for the ill convergence of the 

second resonance state in the θ = 0.10 case. Naturally, the perturbation vanishes as θ is 

increased, as can be seen in Figure 11. The observation of the perturbative behavior implies 

that resonance positions obtained from complex scaled Hamiltonians should be treated with 
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caution, if they are near the rotated continua, as this may lead to inaccurate eigenvalues, 

despite basis set convergence. 

The computed results on the 1-D Hamiltonians using the CAP method are summarized 

in Table 8. Figure 12 presents some selected eigenvalue trajectories obtained in the CAP 

method. As Table 8 demonstrates, the CAP method seems to work better for narrow 

resonances (small Γ), as it only found the first two resonances of the Hamiltonian of Eq. (46), 

although this feature probably depends on the CAP used. Also, the CAP method might 

provide unphysical eigenvalues (see results not in bold in Table 8), although when using 

different CAP functions, the unphysical eigenvalues are usually detected in less cases than the 

physical ones. A promising result is that the second resonance of the Hamiltonian of Eq. (47), 

with 11.047E   and 2.8938  , was obtained in the CAP method with a reasonable 

accuracy of 11.043E   and 2.860   when using 100 basis functions, whereas using the 

same basis and θ = 0.15  in the complex scaling method resulted in the less accurate values of 

11.071E   and 2.7970  . This implies that the CAP method in some cases might provide 

accurate eigenvalues with somewhat less computational effort than the complex scaling 

method. 

To sum up, based on the 1-D problems considered here the complex scaling method 

seems to be more rigorous and reliable with a straightforward usage, while the CAP method 

might be computationally more efficient. 

 

 

Table 6. Resonance energies ( E ) and corresponding inverse lifetime parameters (Γ) of the 

Hamiltonian of Eq. (46) obtained using the complex coordinate method, computed using 

different size basis sets (N) and the scaling parameter  θ  =  0.55 . 

N = 40 N = 100 N = 120 

E Γ E Γ E Γ 

3.426 0.01263 3.426 0.01277 3.426 0.01277 

4.835 1.11779 4.835 1.11788 4.835 1.11788 

5.055 5.97358 5.062 5.96927 5.064 5.96897 

5.277 3.38885 5.277 3.38905 5.277 3.38905 
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Table 7. Resonance and bound state energies ( E ) and corresponding inverse lifetime 

parameters (Γ) of the Hamiltonian of Eq. (47) obtained using the complex coordinate method, 

computed using different size basis sets (N) and scaling parameter (θ) values. 

θ  =  0.00 N = 60 N = 80 

    

 

E Γ E Γ 

    

 

-17.968 0.000000 -17.967 0.000000 

    

 

-2.920 0.000000 -2.928 0.000000 

    θ  =  0.10 N =100 N =120 N =140 N =160 

 

E Γ E Γ E Γ E Γ 

 

-17.967 -0.000113 -17.967 0.000000 -17.967 0.000000 -17.967 0.000000 

 

-2.928 -0.000943 -2.928 0.000000 -2.928 0.000000 -2.928 0.000000 

 

7.152 -0.000425 7.152 0.001336 7.152 0.001335 7.152 0.001335 

  11.070 2.8657 11.073 2.8798 11.075 2.8942 11.076 2.9080 

θ  =  0.15 N =100 N =120 N =140 N =160 

 

E Γ E Γ E Γ E Γ 

 

-17.973 -0.005817 -17.967 -0.000116 -17.967 0.000000 -17.967 0.000000 

 

-2.967 -0.011821 -2.928 -0.000829 -2.928 0.000000 -2.928 0.000000 

 

7.093 -0.073925 7.152 -0.000184 7.152 0.001342 7.152 0.001335 

  11.071 2.7970 11.048 2.8938 11.047 2.8938 11.047 2.8938 

θ  =  0.20 N =100 N =120 N =140 N =160 

 

E Γ E Γ E Γ E Γ 

 

-18.133 1.168860 -17.978 0.008203 -17.967 0.000291 -17.967 0.000000 

 

-5.818 1.191158 -2.996 -0.019021 -2.928 -0.001694 -2.928 0.000000 

 

4.488 -3.93038 7.041 0.11997 7.153 0.00147 7.152 0.00136 

 

11.541 -0.9449 11.082 2.7104 11.048 2.8948 11.047 2.8938 

 

 

  

 

Figure 10. Eigenvalues of the 1-D Hamiltonian of Eq. (46) complex scaled by θ = 0.55, 

computed with 120 basis functions. 
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Figure 11. Eigenvalues of the 1-D Hamiltonian of Eq. (47) when complex scaled with a) θ = 

0.10 or b) θ = 0.15, obtained using 160 basis functions. 

 

 

 

 

 

Table 8. Computed energies (E), corresponding widths (Γ) obtained for the one-dimensional 

test problems using the CAP method. The percentage of the given states being identified with 

respect to all CAP calculations is also given (%). Results validated by the complex scaling 

method are in bold (see Tables 6 and 7). 

For Hamiltonian of Eq. (47) For Hamiltonian of Eq. (46) 

N =  80 N = 100 N =  50 N = 80 

E Γ % E Γ % E Γ % E Γ % 

-17.967 0.000000 87.5 -17.967 0.000000 87.5 3.426 0.0256 100 3.426 0.0254 100 

7.152 0.000960 87.5 7.152 0.001304 100 
   

4.828 2.164 25 

9.313 6.260 25 9.308 6.332 25 
   

4.866 1.986 25 

   
9.324 5.250 25 

   
4.894 2.002 25 

9.359 5.088 25 9.358 5.084 25 
   

5.909 2.980 25 

9.378 4.438 25 9.380 4.444 25 
      

11.037 2.864 37.5 11.043 2.860 75 
      

11.569 12.840 25 
         

   
11.651 11.504 25 

      
11.672 11.808 25 11.673 11.796 25 
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Figure 12. Selected eigenvalue trajectories in the CAP method for the 1-D Hamiltonian of a) 

Eq. (46) and b) Eq. (47), obtained with using a) 50 and b) 80 basis functions and parameters 

a) max 1.50, 6sr    and b) max 1.50, 4sr   . 

 

III.3.2. Resonance states of H2O 

As already detailed in the section II.1.4.1., a global PES for the water molecule 

designed to give correct asymptotic behavior became available only recently. Beyond making 

it possible to compute nearly all bound states for the system, such a PES which is fairly 

accurate also in the asymptotic regions and gives the opportunity for the computation of 

quasi-bound (resonance) states. Based on the PES developed in Ref. 30, Zobov et. al.
101

 have 

performed computations using the CAP method for identifying vibrational Feshbach-

resonance states and J = 2 rovibrational shape-resonance states of the water molecule. Results 

were compared to the experimental values of Ref. 3. During the comparison with experiment, 

all theoretical energy values above dissociation were shifted by 38 cm
–1

, to account for 

discrepancies in the PES. This was performed as the PES shows, taking into account the zero-

point vibrational energy of H2O and OH, a dissociation energy of D0=41108 cm
–1

, which is 38 

cm
–1

 lower than the experimental value of 41145±0.15 cm
–1

. Resonance wave functions, 

although damped by the CAP, were considered to have similar structure to the bound-state 

wave functions with energies just below dissociation, i.e., they were considered to be 

localized in the asymptotic region of the PES, hence the energy shift. Although some features 

of the experimental spectra were reconstructed, energy differences often reached a few tens of 

cm
–1

. 

As a test computation for the codes developed on the complex scaling method based 

on the D
2
FOPI protocol, as described in section III.2.4., reproduction and validation of the 

theoretical nuclear motion results of Zobov et. al.
101

 was attempted for the vibrational 
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Feshbach-resonances; naturally, based on the same PES. For discussing J = 0 vibrational 

resonances, one may use the point group instead of the molecular symmetry group, which for 

H2O is C2v, which can be exploited in the D
2
FOPI algorithm, by sorting basis functions into 

odd and even symmetry blocks. Only odd symmetry states were measured experimentally,
3
 

thus only those are considered here. In order to have knowledge on the convergence of the 

obtained resonance states with respect to the basis set size, three sets of D
2
FOPI computations 

(see Eq. (44) ) were used to obtain eigenvectors for constructing the matrix representation of 

the scaled Hamiltonian of Eq. (45). The three sets were obtained using (75,95,50), (85,105,50) 

and (95,115,55) vibrational basis sets, respectively, whereby (n1,n2,np) means n1 and n2 PO 

spherical-DVR functions (with 400 primitive spherical functions) for the two distance-type 

and np odd parity Legendre basis functions for the angle-type coordinates. Following the 

notation of Ref. 5, the spherical oscillator basis functions of the R1 and R2 coordinates had 

parameters max

1R 19.0 bohr, max

2R 11.0 bohr in the first set,  max

1R 20.0 bohr, max

2R

12.0 bohr in the second set, and max

1R 20.5 bohr, max

2R 12.5 bohr in the third set. From the 

three sets, 700, 850 and 900 eigenvectors were taken to construct the scaled Hamiltonian 

matrix of Eq. (45), respectively. It is noted, that the number of bound odd symmetry states for 

H2O is around 525. To obtain the eigenvalue trajectories, the scaling parameter   was 

changed between 0.000075 and 0.0030 in thirteen steps, the resonance cusps were identified 

by visual inspection. 

One might see from Figure 13 which shows eigenvalue trajectories on the complex 

plane computed with the third and largest basis set, that the qualitative picture obtained from 

the plots is as expected, the bound state eigenvalues are on the real axis, the rotating continua 

appears above the dissociation energy rotated by an angle of 2  for a given   value, and 

also the resonance states can be observed as cusps on some of the trajectories, as derived in 

Ref. 112.  
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 In Table 9 vibrational Feshbach-resonances of the water molecule are presented. 

Experimental and theoretical values computed with the CAP method (including shifting) and 

their assignment are taken from Ref. 101, while theoretical values computed with complex 

scaling and their convergence with respect to basis set size are from the present work. 

Assignment of the results from complex scaling was done by simply matching energies with 

experimental values. The remarkable surprise which can be seen in Table 9 is that the 

resonance energies obtained with complex scaling reproduce the experimental values with 

considerable accuracy, despite the fact that no energy shifting was applied.  

Driven by the numbers of Table 9, comparison of the theoretical results without 

shifting the energies obtained with the CAP method is summarized in Table 10. For resonance 

eigenvalues obtained with both methods, calculations show good agreement as far as energy 

is concerned. The inverse lifetime parameter Γ seems to converge much more slowly than the 

energy; therefore, they are not taken into account when associating the eigenvalues computed 

with each other in the two methods. There are resonance states, however, which are obtained 

with only one of the computational methods. It is not surprising to have some results only 

determined with complex scaling, since the CAP method is not guaranteed to identify “all” 

resonance states, as already seen for example in Ref. 113. As to the eigenvalues computed 

only by the CAP method, they have large Г parameters (thus, short lifetime), so they remain 

“hidden” in the range of   used in the complex scaled computations.  

Based on Table 10 one may arrive to the conclusion that the energy shifting used in 

Ref. 101 was unnecessary for the J = 0 Feshbach-resonances and therefore the resulting 

assignments are false. Recent discussions with the authors of Ref. 101 led to further 

processing of experimental data and the comparison of the experimental energy levels with 

theoretical values computed with both CAP and complex scaling methods. So far it seems that 

for odd symmetry Feshbach-resonance states, experiment and theory are in good agreement, 

even without any energy shifting. 

 A simple qualitative explanation for why the computed Feshbach-resonances do not 

need the energy shifting may lie in the very nature of this type of resonances. Feshbach- 

resonances arise when the system has enough energy to dissociate; however, this energy is 

localized in nondissociative vibrational modes. For the water molecule, the bending mode is 

such a nondissociative motion. If for a given Feshbach-resonance state of water, a significant 

portion of the energy is stored in the bending mode, this leads to less energy in the 
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dissociative antisymmetric stretching mode, which in turn means that the wave function is 

less delocalized in the dissociatve coordinate. Therefore, the inaccuracies in the PES which 

are responsible for the error in the dissociation energy, are not sampled dominantly for 

Feshbach-resonance states, since they are restricted to the asymptotic regions of the 

dissociation coordinate. Naturally, this qualitative explanation needs to be investigated more 

rigorously, for example by plotting wave functions or computing internal coordinate 

expectation values. 

 

 

Table 9. Feshbach-resonance eigenvalues of the water molecule, obtained from measurement 

(Exp) or computation by using complex absorbing potentials (CAP) or complex scaling (CC). 

Energies and inverse lifetime parameters (Г) are given in cm
-1

. 

Exp
a
 CAP

 a
 CC

b
 CC conv.

c
 

Energy Г Energy Г Energy Г Energy Г 

41173.68 0.21 41157.7 0.01 41175.25 <0.001 -0.090 <0.001 

41204.74 0.22 41178.5 2.03 41206.58 0.002 4.489 -0.242 

41221.24 1 41213.3 0.002 41219.02 0.35 - - 

41226.07 0.42 41244.3 0.33 41224.58 0.012 0.217 -0.020 

41264.57 0.09 41262.4 0.3 41259.49 0.68 - - 

41268.17 0.36 41295.8 0.03 41268.79 0.004 0.784 -0.091 

41296.78 0.52 41307.0 0.12 41287.84 0.48 1.118 -0.092 

41310.77 2.4 41313.1 20.14 41307.44 1.276 -3.979 0.469 
aResults are taken from Ref. 101 
bValues were obtained using the (95 115 55) basis set.  

cConvergence is with respect to results obtained with the (85 105 50) basis set, missing convergence values  

indicate that those resonances were only identified using the largest (95 115 55) basis set. 
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Table 10. Feshbach-resonance eigenvalues of the water 

molecule computed with either a complex absorbing potential 

(CAP) or the complex scaling method (CC). Energies and 

inverse lifetime parameters (Г) are given in cm
–1

. 

CAP
a
 CC

b
 CC conv.

c
 

Energy Г Energy Г Energy Г 

- - 41111.20 <0.001 -0.014 <0.001 

41119.69 0.010 41113.56 <0.001 0.037 -0.002 

41140.49 2.030 - - - - 

41175.29 0.002 41175.25 <0.001 -0.090 <0.001 

41206.29 0.330 41206.58 0.002 4.49 -0.242 

- - 41219.02 0.354 - - 

41224.39 0.300 41224.58 0.012 0.22 -0.020 

41257.79 0.030 41259.49 0.676 - - 

41268.99 0.120 41268.79 0.004 0.78 -0.091 

- - 41287.84 0.480 1.12 -0.092 

- - 41307.44 1.276 -3.98 0.469 

41275.09 20.140 - - - - 
aResults are taken from Ref. 101 
bValues were obtained using the (95 115 55) basis set.  
cConvergence is with respect to results obtained with the (85 105 50) basis 

set, missing convergence values indicate that those resonances were only 

identified using the largest  (95 115 55) basis set. 

 

III.3.3. Resonance states of H3
+ 

 Although it is one of the simplest polyatomic molecules, even after 30 years, and 

despite the enormous advances in computers and experimental methods, the H3
+
 spectrum at 

highly excited regions is neither fully accessed experimentally nor fully described 

theoretically. For example, the near-dissociation spectrum of H3
+
 reported by Carrington et 

al.
1,2

 is still unassigned and poorly understood almost 30 years after it was recorded. 

Achieving the accuracy with theoretical methods which could be used to reproduce and assign 

the Carrington lines seems to be beyond the limit of our capabilities at present. Neverheless, 

this is a valuable goal which fuels methodological developments.  

Computation of the J = 0 resonances of H3
+
 was attempted using both the CAP method 

and the complex scaling method based on the D
2
FOPI protocol, as described in sections 

III.2.2. and III.2.4., respectively. For the bound state computations the PPKT2 PES
118

 was 

used, which is known for having a well described asymptotic behavior. This also makes 
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comparison with previous results
98

 straightforward. For discussing J = 0 vibrational 

resonances, one may use the point group instead of the molecular symmetry group, which for 

H3
+
 is D3h. From this group, however, D

2
FOPI can only exploit the symmetry of the C2v 

subgroup, and divide the computations into odd and even symmetry blocks. Only the case of 

even symmetry is considered in the following.  

The basis set used in the D
2
FOPI computations for obtaining the 1000 initial 

eigenvectors (see Eqs. (30) and (44), for the CAP and complex scaling methods, respectively) 

was the vibrational basis set of (120,120,51), whereby (n1,n2,np) means n1 and n2 PO 

spherical-DVR functions (with 600 primitive spherical functions) for the two distance-type 

and np even parity Legendre basis functions for the angle-type coordinates. Following the 

notation of Ref. 5, the spherical oscillator basis functions of the R1 and R2 coordinates had 

parameters 
max max

1 2 22.0R R  bohr. It is noted, that this basis set used for constructing the 

initial eigenvectors gives the 688 even symmetry bound states of H3
+
 within 1 cm

-1
 

convergence.
5
 For constructing the complex symmetric matrix representation of the 

Hamiltonians in the CAP and complex scaling methods (see Eqs. (31) and (45),  respectively), 

the initial eigenvectors numbering from 500-995 and from 1-990 were used, respectively, 

whereby 1 represents the ground state and numbering is in the order of increasing energy. 

Including eigenvectors only from 500 when using the CAP method is based on the 

observation of Silva et al., that further inclusion of bound states does not seem to change the 

resonance positions.
98

 

When using the CAP method to compute resonances, the absorbing potential in Eq. 

(31) was chosen to have a form  

1 2 1 2( , ) ( ) ( ),W R R w R w R 
 

where 

 
2

0 , if
( ) ,

, if

s

s s

R R
w R

R R R R


 

 

 

and Rs is the value where the CAP “turns on”. Different CAP functions were constructed by 

setting Rs to 13, 15 or 17 bohr for constructing the eigenvalue trajectories, while the CAP 

strength   of Eq. (31) was changed between min 0.001   and max 0.25, 0.50, 0.75, 1.00    

or 1.25  in 500N   steps. Following the literature,
92

   was set in the kth step by 

 

 
 max min

min

ln 1
1 1

1
k exp k

N

 
 

  
     

  

. Resonance positions were identified by the 
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automatic procedure described in the end of section III.2.2. setting the energy threshold to 1 

cm
–1

, and the inverse lifetime parameter tolerance to 50%. Cusps were associated with 

resonance eigenvalues if for at least 67% of the different CAP functions provided a cusp in 

the same position, i.e., within the 1 cm
–1

 energy threshold and having an inverse lifetime 

parameter agreeing within 50% tolerance. 

When using the complex scaling method, the scaling parameter   was changed 

between 0.0000625 and 0.0045 in eleven steps to obtain the eigenvalue trajectories, which 

were interpreted by visual inspection. Computation of the eigenvalue trajectories required a 

few days CPU time for both the CAP and complex scaling methods. 

 Table 11 presents the resonances identified up to around 1000 cm
–1

 beyond the first 

dissociation limit, obtained in the CAP and complex scaling methods along with the CAP 

results of Silva et al.
98

, which were obtained with a larger basis set than used for present 

results. It is clear from Table 11 that many of the resonance eigenvalues computed with the 

complex scaling method are unconverged, as the Г inverse lifetime parameters are negative 

for some of them. These are unphysical values which seem to occur for states where Г is 

small enough in absolute value to become negative upon including basis set error. 

Nonetheless, concerning energy, the majority of the results of Ref. 98 are reproduced with a 

number of additional resonances identified. The resonances not reproduced by the complex 

scaling method are probably missing due to the lack of basis set convergence, or they might 

also be unphysical detections in the CAP method originating from the perturbation of the 

CAP used. As for the CAP results of the present work, the lower-energy resonances seem to 

have a systematic overestimation of Г, compared to their counterparts computed with 

complex scaling. Also, many of the lower energy resonances are missing. There are quite a 

few states obtained in the higher-energy regions, which are not identified with complex 

scaling and are not present in Ref. 98., these are probably unphysical detections. 

 To sum up, complex scaling seems to work very well, as it reproduces much of 

previous results and also gives additional resonances, but computations need to be improved 

by increasing basis set size. The CAP method of present study does not seem to perform very 

well, as it seems to miss many physical resonances and identify many unphysical ones. Most 

likely the CAP method could be improved by increasing basis set size, and probably even 

more so by utilizing more suitable CAP functions instead of the simple quadratic one used in 

this study. 
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Table 11. Feshbach-resonance eigenvalues of the H3
+
 molecule taken from Ref. 98 (CAP, 

Silva et al.), or computed using a complex absorbing potential (CAP, this work) or the 

complex scaling method (CC). Energies and inverse lifetime parameters (Г) are given in cm
–1

. 

CAP, Silva et al. CAP, this work CC CAP, Silva et al. CAP, this work CC 

Energy Г Energy Г Energy Г Energy Г Energy Г Energy Г 

34926.61 0.04 

  

34925.88 -0.02 

  

35311.20 3.69 

  

    

34970.56 -0.02 

  

35362.10 7.83 35362.43 0.77 

34981.05 0.10 

  

34980.64 -0.006 

  

35368.60 4.78 35375.68 1.80 

35012.92 0.003 

  

35009.96 -0.10 35384.23 0.004 

    35029.60 0.06 

  

35026.29 0.18 

  

35467.30 2.95 

  

    

35048.28 -0.01 

  

35501.40 1.05 

  

  

35049.10 0.90 35046.27 0.08 

  

35528.70 1.70 35525.91 0.76 

35058.82 0.09 

    

35564.58 0.07 35561.50 7.66 

  

    

35072.01 0.07 

      35107.54 0.01 

  

35098.75 0.12 

      35116.40 0.08 

  

35123.25 0.32 

  

35570.20 14.98 

  35153.25 0.00 35150.10 1.67 35149.24 0.26 

  

35576.50 4.96 

  

    

35186.84 1.75 

  

35593.60 19.90 

  35190.70 0.02 35190.50 0.46 35187.71 0.46 

  

35602.10 7.20 

  35209.69 0.02 

      

35603.80 6.97 35604.97 2.06 

    

35241.04 1.11 

  

35609.80 20.33 

  35243.55 0.09 35243.20 1.27 35244.12 0.92 

  

35625.40 0.87 35623.18 0.42 

    

35250.70 0.30 

    

35688.46 0.20 

    

35268.49 0.16 

    

35690.91 1.98 

    

35271.03 0.12 

    

35715.88 0.90 

  

35286.90 3.51 35283.81 0.90 

    

35798.69 0.82 

  

35290.00 3.28 

      

35799.79 0.73 

    

35302.24 1.51 35822.80 0.08 

  

35824.49 4.62 
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IV. Summary 

 The main goal of my PhD work, covered in this thesis, was to develop an efficient 

variational algorithm and computer code for computing accurate (ro)vibrational resonance 

states. To achieve this goal requires the availability of an accurate global potential energy 

surface (PES) of the molecule under investigation and an algorithm which is capable of 

determining converged bound (ro)vibrational states up to dissociation. The requirement on the 

PES narrowed the work to triatomic molecules, as global accurate PESs are not available for 

molecules with more than three atoms at present. Furthermore, to compute resonance states 

for molecules containing more than three atoms is also extremely challenging. 

 To have an algorithm and computer code for the accurate variational computation of 

bound rovibrational states, the D
2
FOPI protocol, originally developed for vibrational 

computations was extended to allow the execution of variational rovibrational computations. 

The rovibrational Hamiltonians employed in the new D
2
FOPI code are based on the R1- and 

bisector embeddings. I successfully applied the extended D
2
FOPI code computing 

rovibrational states for the H2
16

O, H3
+
, H2D

+
, and D2H

+
 molecules. 

 As much of our understanding of high-resolution molecular spectra is based on 

approximate quantum numbers, I extended the D
2
FOPI program package with a code 

computing approximate quantum numbers by utilizing the rigid rotor decomposition (RRD) 

scheme. Using this code, the embedding dependence and the range of applicability of the 

RRD scheme with respect to energy and rotational excitation was investigated. I also used the 

code to validate previously assigned quantum labels for the H2D
+
 and D2H

+
 molecules. 

 The singular operator term 
2r
 with 0,r    often arises in Hamiltonians utilizing 

internal coordinates, for example in the Hamiltonian used by the D
2
FOPI protocol. Therefore, 

the numerical behavior of such terms when applying the diagonal DVR approximation on 

them was investigated in some detail. The numerical results obtained show that the 

unexpected applicability of the diagonal DVR approximation for singular operator terms can 

be traced back to the fact that although within this approximation the matrix elements of the 

singular operator terms are computed with huge relative error, the eigenvalues are reproduced 

with surprisingly good accuracy. 

 After producing an efficient code for the computation of a large number of bound 

states, I extended the D
2
FOPI package with two codes for computing (ro)vibrational 

resonances. These codes are based either on using a complex absorbing potential (CAP) or on 

the complex scaling method. Of the two techniques the latter received more attention during 
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this work, as using complex scaling to compute nuclear motion resonances is not a popular 

choice. The algorithms are based on using a compact basis set of eigenvectors previously 

computed by the D
2
FOPI protocol. Resonance eigenvalues are obtained by identifying cusps 

in the eigenvalue trajectories, which is automated for the CAP method. As test systems, the 

H2O and H3
+
 molecules were chosen, as they are triatomic systems of particular interest and 

global, accurate PESs are available for them. The complex scaling algorithm proved to be 

useful in validating previously computed Feshbach-resonances of the H2O molecule and 

identifying possible missassignments. For the H3
+
 molecule, the complex scaling method is in 

good agreement with previous results from the literature, and also provided a number of new 

Feshbach-resonances.  
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